Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (3): 723-733.doi: 10.13278/j.cnki.jjuese.20200305

Previous Articles     Next Articles

Classification of Uranium Deposits Based on PCA-SVM Algorithm for Coupling Data Set of Rare Earth Elements and Rare Earth Discrimination Indexes

Liu Yunpeng1,2,3, Guo Chunying1,2, Qin Mingkuan1,2, Wu Yu1,2, Pei Liuning1,2   

  1. 1. Beijing Research Institute of Uranium Geology, CNNC, Beijing 100029, China;
    2. Key Laboratory of Uranium Resource Exploration and Evaluation Technology, CNNC, Beijing 100029, China;
    3. Key Laboratory of Mineral Resources Evaluation in Northeast Asia (Jilin University), Ministry of Natural Resources, Changchun 130061, China
  • Received:2020-12-11 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the Special Project for Exploration and Exploitation of Deep Resources (2017YFC0602600),the Pre-Study on National Defense During the 13th Five-Year Plan Period (3210402),the Geological Prospecting Research Project of China Nuclear Geology (Geology D1802),the Cultivation Program of Science and Technology Innovation Team of Ministry of Land and Resources of China (201708) and the Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources (DBY-KF-19-18)

Abstract: The pitchblende/uraninite of different types of uranium deposits has different composition of rare earth elements, which can be used as an important index to distinguish the types of uranium deposits. Using the Python language-based classification model combined with principal component analysis (PCA) and support vector machines (SVM), the data of 216 groups of pitchblende/uraninite rare earth elements collected from six known uranium deposits worldwide were studied. With the 216 groups of data as the training set, the SVM classification model was constructed through data cleaning, feature scaling, PCA feature extraction, grid search and cross-validation for parameter optimization, and 24 groups of syn-metamorphic Hujiayu uraninite were intelligently identified. The test accuracy of the 14-dimensional training set optimal model to determine the type of Hujiayu uraninite using only rare earth elements is 0.4%,and the test accuracy of the optimal model of the 17-dimensional training set composed of rare earth elements, total rare earth elements, ratio of light and heavy rare earth elements,and europium anomalies is 75.0%, an improvement of 74.6% over the 14-dimensional training set. The model has a strong generalization ability. But through traditional rare earth element distribution curve and the w(ΣREE)-(LREE/HREE)N diagram, the type of Hujiayu uraninite cannot be determined effectively. This study shows that the PCA-SVM algorithm can effectively determine the genetic type of uranium oxides by mining the data set with the addition of traditional rare earth discriminating indicators, and the effect is significantly better than the pure rare earth element data set and the traditional rare earth distribution curve, w(ΣREE)-(LREE/HREE)N diagram.

Key words: uranium oxide, rare earth elements, traditional rare earth discriminant index, principal component analysis, support vector machine, classification

CLC Number: 

  • P619.14
[1] 韩帅,李明超,任秋兵,等. 基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析[J].岩石学报,2018,34(11): 3207-3216. Han Shuai, Li Mingchao, Ren Qiubing, et al. Intelligent Determination and Data Mining for Tectonic Settings of Basalts Based on Big Data Methods[J]. Acta Petrologica Sinica, 2018, 34(11): 3207-3216.
[2] 焦守涛,周永章,张琪,等. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J]. 岩石学报,2018,34(11): 3189-3194. Jiao Shoutao, Zhou Yongzhang, Zhang Qi, et al. Study on Intelligent Discrimination of Tectonic Settings Based on Global Gabbro Data from GEOROC[J]. Acta Petrologica Sinica, 2018, 34(11): 3189-3194.
[3] Ueki K, Hino H, Kuwatani T. Geochemical Discrimination and Characteristics of Magmatic Tectonic Settings: A Machine-Learning-Based Approach[J]. Geochemistry, Geophysics, Geosystems, 2017, 19(4): 1327-1347.
[4] 韩启迪,张小桐,申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版),2019,49(2): 611-620. Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 611-620.
[5] 王思琪,王明常,王凤艳,等. 基于SAE-ELM方法的多金属遥感地球化学反演[J]. 世界地质,2020,39(4): 195-202. Wang Siqi, Wang Mingchang, Wang Fengyan, et al. Remote Sensing Geochemical Inversion of Multi Metal Materials Based on SAE-ELM[J]. Global Geology, 2020, 39(4): 195-202.
[6] 徐述腾,周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报,2018,34(11): 3244-3252. Xu Shuteng, Zhou Yongzhang. Artificial Intelligence Identification of Ore Minerals Under Microscope Based on Deep Learning Algorithm[J]. Acta Petrologica Sinica, 2018, 34(11): 3244-3252.
[7] 刘力辉,陆蓉,杨文魁. 基于深度学习的地震岩相反演方法[J]. 石油物探,2019,58(1): 123-129. Liu Lihui, Lu Rong, Yang Wenkui. Seismic Lithofacies Inversion Based on Deep Learning[J]. Geophysical Prospecting for Petroleum, 2019, 58(1): 123-129.
[8] 闫佰忠,孙剑,王昕洲,等. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版),2020,50(1): 208-216. Yan Baizhong, Sun Jian, Wang Xinzhou, et al. Multivariable LSTM Neural Network Model for Groundwater Levels Prediction[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1): 208-216.
[9] 刘艳鹏,朱立新,周永章. 卷积神经网络及其在矿床找矿预测中的应用:以安徽省兆吉口铅锌矿床为例[J]. 岩石学报,2018,34(11): 3217-3224. Liu Yanpeng, Zhu Lixin, Zhou Yongzhang. Application of Convolutional Neural Network in Prospecting Prediction of Ore Deposits: Taking the Zhaojikou Pb-Zn Ore Deposit in Anhui Province as a Case[J]. Acta Petrologica Sinica, 2018, 34(11): 3217-3224.
[10] Zuo R, Xiong Y. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods[J]. Natural Resources Research, 2018, 27(1): 5-13.
[11] Ghezelbash R, Maghsoudi A, Carranza E J M. Performance Evaluation of RBF- and SVM-Based Machine Learning Algorithms for Predictive Mineral Prospectivity Modeling: Integration of S-A Multifractal Model and Mineralization Controls[J]. Earth Science Informatics, 2019, 12: 277-293.
[12] Mercadier J, Cuney M, Lach P, et al. Origin of Uranium Deposits Revealed by Their Rare Earth Element Signature[J]. Terra Nova, 2011, 23(4): 264-269.
[13] Frimmel H E, Schedel S, Brätz H. Uraninite Chemistry as Forensic Tool for Provenance Analysis[J]. Applied Geochemistry, 2014, 48: 104-121.
[14] Eglinger A, André-Mayer A S, Vanderhaeghe O, et al. Geochemical Signatures of Uranium Oxides in the Lufilian Belt: From Unconformity-Related to Syn-Metamorphic Uranium Deposits During the Pan-African Orogenic Cycle[J]. Ore Geology Reviews, 2013, 54: 197-213.
[15] Gandhi S S, Potter E G, Fayek M. New Constraints on Genesis of the Polymetallic Veins at Port Radium, Great Bear Lake, Northwest Canadian Shield[J]. Ore Geology Reviews, 2018, 96: 28-47.
[16] Petrelli M, Perugini D. Solving Petrological Problems Through Machine Learning: The Study Case of Tectonic Discrimination Using Geochemical and Isotopic Data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10): 81.
[17] Ren Q B, Li M C, Han S. Tectonic Discrimination of Olivine in Basalt Using Data Mining Techniques Based on Major Elements: A Comparative Study from Multiple Perspectives[J]. Big Earth Data, 2019, 3(1): 8-25.
[18] Balboni E, Jones N, Spano T, et al. Chemical and Sr Isotopic Characterization of North America Uranium Ores: Nuclear Forensic Applications[J]. Applied Geochemistry, 2016, 74: 24-32.
[19] Abdi H, Williams L J. Principal Component Analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.
[20] Cortes C, Vapnik V. Support-Vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
[21] Hsu C W, Lin C J. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
[22] 李苍柏,肖克严,李楠,等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报,2020,41(2): 309-319. Li Cangbai, Xiao Keyan, Li Nan, et al. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction[J]. Acta Geoscientica Sinica, 2020, 41(2): 309-319.
[23] 刘祥楼, 贾东旭, 李辉, 等. 说话人识别中支持向量机核函数参数优化研究[J]. 科学技术与工程,2010, 10(7): 1669-1673. Liu Xianglou, Jia Dongxu, Li Hui, et al. Research on Kernel Parameter Optimization of Support Vector Machine in Speaker Recognition[J]. Science Technology and Engineering, 2010, 10(7): 1669-1673.
[24] Arlot S, Celisse A. A Survey of Cross-Validation Procedures for Model Selection[J]. Statistics Surveys, 2010, 4: 40-79.
[25] 宋永东. 支持向量机参数选择的研究[D]. 武汉:华中师范大学,2013. Song Yongdong. Research of Parameter Selection for Support Vector Machine[D]. Wuhan: Central China Normal University, 2013.
[26] Rodriguez J D, Perez A, Lozano J A. Sensitivity Analysis of K-Fold Cross Validation in Prediction Error Estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 569-575.
[27] 骆金诚. 粤北花岗岩型铀矿床成因机制研究:矿物学和铀矿物U-Pb年代学及地球化学约束[D]. 北京:中国科学院大学,2015. Luo Jincheng. Genesis of Granite-Hosted Uranium Deposits in the Northern Guangdong, China: Constraints from Mineralogy, Uranium Mineral U-Pb Geochronology and Geochemistry[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[28] McLennan S, Taylor S. Rare Earth Element Mobility Associated with Uranium Mineralization[J]. Nature, 1979, 282: 247-250.
[29] Alexandre P, Kyser T K. Effects of Cationic Substitutions and Alteration in Uraninite, and Implications for the Dating of Uranium Deposits[J]. Canadian Mineralogist, 2005, 43(3): 1005-1017.
[30] Anders E, Grevesse N. Abundances of the Elements: Meteoritic and Solar[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 197-214.
[31] 任秋兵,李明超,韩帅. 基于改进遗传算法-神经网络的玄武岩构造环境判别及对比实验[J].地学前缘,2019,26(4): 117-124. Ren Qiubing, Li Mingchao, Han Shuai. Discrimination and Comparison Experiments of Basalt Tectonic Setting Based on Improved Genetic Algorithm-Optimized Neural Network[J]. Earth Science Frontiers, 2019, 26(4): 117-124.
[32] 刘承照,韩帅,李明超,等. 耦合PCA-SVM算法的金矿矿床规模预测分析研究[J]. 地学前缘,2019,26(4): 138-145. Liu Chengzhao, Han Shuai, Li Mingchao,et al. Prediction and Analysis of Gold Deposit Sizes Based on Coupled PCA-SVM Algorithm[J]. Earth Science Frontiers, 2019, 26(4): 138-145.
[33] 张野,李明超,韩帅,等. 基于金矿规格单元数据的机器学习方法在成矿建模分析中的应用[J]. 大地构造与成矿学,2020,44(2): 183-191. Zhang Ye, Li Mingchao, Han Shuai,et al. Machine Learning Methods Application in Gold Mineralization Prediction Based on Gold Unit Data[J]. Geotectonica et Metallogenia, 2020, 44(2): 183-191.
[34] 任秋兵,李明超,李玉琼,等. 基于全球橄榄石数据的玄武岩构造环境智能判别方法及其验证[J]. 大地构造与成矿学,2020,44(2): 212-221. Ren Qiubing, Li Mingchao, Li Yuqiong, et al. An Intelligent Method for Geochemical Discrimination of Tectonic Settings of Basalt Based on Olivine Composition: GWO-SVM Method and Its Verification[J]. Geotectonica et Metallogenia, 2020, 44(2): 212-221.
[1] Xiong Yuehan, Liu Dongyan, Liu Dongsheng, Wang Yanlei, Tang Xiaoshan. Automatic Lithology Classification Method Based on Deep Learning of Rock Sample Meso-Image [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1597-1604.
[2] Wang Boshuai, Pu Dongchuan, Li Tingting, Niu Xuefeng. Mapping of Urban Built-Up Area of Changchun City Based on Multi-Source Remote Sensing Images [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1284-1294.
[3] Mou Dan, Zhang Lichun, Xu Changling. Comparison of Three Classical Machine Learning Algorithms for Lithology Identification of Volcanic Rocks Using Well Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 951-956.
[4] Wei Bo, Zhao Jianbin, Wei Yanwei, Li Zhenlin, Xiong Kui. Reservoir Classification Method in Second Member of Liushagang Formation in Bailian Area, Fushan Sag [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1639-1647.
[5] Zhang Hui, Liu Wanjun, Lü Huanhuan. Hyperspectral Image Classification Based on Guided Filtering Combined with Local Discrimination Embedding [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1249-1260.
[6] Fang Shi, Zhao Yun. Definition and Reestablishment on Conception System About Comparative Sedimentology [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 480-499.
[7] Li Xiangdong, He Youbin. REE Geochemistry and Indicators of Sedimentary Media of Limestone at Top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 139-157.
[8] Bai Tao, Yang Guodong, Wang Fengyan, Liu Jiawei. Object-Oriented Optimal Segmentation Scale Calculation Model [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 304-312.
[9] Dong Jinkun, Yang Mei, Wu Zhiyuan, Qin Shan, Wang Yuwei. Systematic Mineralogy Data Characteristics and Database Construction [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 727-736.
[10] Yin Chao, Zhou Aihong, Yuan Ying, Wang Shuaiwei. Prediction of Consolidation Coefficient Based on Neighborhood Rough Set and Support Vector Machine [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 746-754.
[11] Ye Tao, Wei Ajuan, Huang Zhi, Zhao Zhiping, Xiao Shuguang. Quantitative Identification of Volcanic Lithology Based on Comprehensive Principal Component Analysis and Bayes Discriminant Method: A Case Study of Mesozoic in Bohai Bay [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 872-879.
[12] He Jinxin, Jiang Tian, Dong Yongsheng, Han Kaixu, Ma Ning, Xiong Yue. Alteration Information Extraction Based on Remote Sensing of Landsat 8 in Gongchangling Area of Liaoning [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 893-901.
[13] Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 611-620.
[14] Li Lincui, Li Xi'an, Hong Bo, Wang Li. Experiment on Pore Structures of Malan Loess at Different Buried Depth [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 493-503.
[15] Wang Jiliang, Hao Wenzhong, Huang Xiaoquan, Xu Qi, Wei Yujun, Zhou Bingqiang, Xu Lei. Geological Study of Rock Mass Quality of Wudongde High Arc Dam Foundation Under Construction Period [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1566-1573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Zu-feng, SUN Xiu-juan,CUI Ji-xin. The Study of Orthogonal Test in Concrete Corrosion[J]. J4, 2007, 37(5): 978 -0982 .
[2] SHAN Jing-fu, WANG Feng, SUN Hai-lei, SUN Ji-gang, MENG Qi-an. The Responding to Syn-Sedimentary Fault System for Sediment Filling Evolvement in the Early Cretaceous|Bel-Lake Depression of Mongolia[J]. J4, 2010, 40(3): 509 -518 .
[3] LI Zhi-qiang, FAN Yi-ren, DENG Shao-gui, JI Xiu-feng, LI Hu. Inversion of Array Laterolog by Improved Difference Evolution[J]. J4, 2010, 40(5): 1199 -1204 .
[4] JIA Dacheng, XING Lixin, PAN Jun, M. J. van Bergen, H. van Roermund. Geochemical Characteristics of the AluminumEnriched Spinels in Xenoliths from the Upper Mantle Shear Belt in Yitong,Northeastern China[J]. J4, 2006, 36(04): 497 -502 .
[5] LIU Shao-yu,ZHANG Guang-hui,ZHANG Cui-yun,ZHOU Xiao-ni. Water Resources System Evolution and Impact of Human Activities in Heihe River Basin[J]. J4, 2008, 38(5): 806 -0812 .
[6] DONG Gui-ming, SHU Long-cang, TIAN Juan, JI Ye-fei. Numerical Model of Groundwater Flow in Karst Underground River System, Southwestern China[J]. J4, 2011, 41(4): 1136 -1143 .
[7] HU Da-qian, CHU Feng-you, YAO Jie. The Mineral Composition and Element Geochimestry of CoEnriched Crust from the YJA Sea Mount in the Central Pacific Ocean[J]. J4, 2006, 36(01): 32 -0037 .
[8] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[9] XIE Zhong-lei, YANG Bai-ling, BAO Guo-zhang,DONG De-ming. Fractionation and Its Affecting Factors of Nickel in Tea Garden Soils[J]. J4, 2006, 36(04): 599 -604 .
[10] LU Jin-cai, WEI Xian-yang, LI Yu-hong, WEI Jian-she. Gas Production Rate:The Key Index for Evalution of Industrial Values of Oil Shale-Case on He 1 Well in Triassic Yanchang Formation in Ordos Basin[J]. J4, 2009, 39(1): 60 -0064 .