J4 ›› 2012, Vol. 42 ›› Issue (1): 9-17.

Previous Articles     Next Articles

Investigation About Oil and Water Distribution and Causes in “Small and Fat&rdquo|Oil Reservoir:Take Beizhong Oil Field in Beier Depression Hailaer Basin as an Example

HUANG Jin-song1|LIU Chang-guo2| FU Xiao-fei3, LV Yan-fang3, SUN Yong-he3   

  1. 1.Research Institute of Exploration and Development, Daqing Oil Field Company Ltd, Daqing163712|Heilongjiang,China;
    2.Oil Recover Plant No. 2|Daqing Oilfield Company Ltd| Daqing163414,Heilongjiang,China;
    3.College of Earth Sciences|North East Petroleum Institute, Daqing163318,Heilongjiang,China
  • Received:2011-06-04 Online:2012-01-26 Published:2012-01-26

Abstract:

According to characteristics of oil and gas accumulation in “small and fat” oil reservoir, the authors take Beizhong oil field of Beier depression as an example. The typical examples and reservoir sections are analyzed base on the study of logging curves, results of seismic interpretation, logging interpretation data and dynamic development of test data on oil production of exploration-evaluation wells and development well, combined with faults system split results in Beizhong field. On the basis of “sag-wide oil bearing” in Nanyi(the first member of Nantun Formation) major reservoir of Beizhong oil field, the factors of forming poor oil areas or water areas are loss of major reservoirs within the target layer by the function of fault, causing water areas formed near the faults; adjustment by later reverse faults, oil from Nanyi Layer adjust to Naner(the second member of Nantun Formation) layer or Dayi(the first member of Damoguaihe Formation) Layer formed secondary reservoirs, and causing poor oil areas formed near the reveres faults within main reservoir; oil dynamics migrations and accumulation during oil development, causing quickly water occurrence in lower positions.

Key words: “small and fat&rdquo, reservoirs, sag-wide oil bearing, “sweet point”, fault missing function, reverse fault, dynamic migration and accumulation, Hailaer basin, petroleum gas

CLC Number: 

  • P618.13
[1] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
[2] Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692.
[3] Cai Laixing, Lu Shuangfang, Xiao Guolin, Wang Jiao, Wu Zhiqiang, Guo Xingwei, Hou Fanghui. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs: Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 15-28.
[4] Cai Laixing, Lu Shuangfang, Zhang Xunhua, Xiao Guolin, Wu Zhiqiang, Huang Wenbiao. Establishment of Evaluation Scheme of Tight Sandstone Reservoirs Based on Pore Throat:A Case Study on the 4th Member of Quantou Formation at Central Depression of Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1654-1667.
[5] Zhang Bing, Yang Kai, Jia Xueli, Zheng Rongcai, Guo Qiang, Wen Huaguo. Sedimentary-Diagenetic Systems of Dolomite Reservoir in Changxing Formation in the Eastern Kaijiang-Liangping Intraplatform Trough [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1631-1641.
[6] Gao Chonglong, Ji Youliang, Jin Jun, Wang Jian, Ren Ying, Che Shiqi, Wang Ru, Huan Zhijun. Characteristics and Controlling Factors on Physical Properties of Deep Buried Favorable Reservoirs of the Qingshuihe Formation in Muosuowan Area, Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 990-1006.
[7] Li Bonan, Liu Cai, Guo Zhiqi. Estimation of Fractured Reservoir Parameters Based on Equivalent Media Model and Frequncy-Dependent AVO Inversion [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 234-244.
[8] Jiang Guipu. Cause of Oil-Gas Space Complementary Distribution and the Determining Methods of Distribution Range in Continental Faulted Depression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1649-1659.
[9] Zhao Yande, Qi Yalin, Luo Anxiang, Cheng Dangxing, Li Jihong, Huang Jinxiu. Application of Fluid Inclusions and Dating of Authigenic Illite in Reconstruction Jurassic Reservoirs Hydrocarbon Filling History,Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1637-1648.
[10] Geng Xiaojie, Zhu Xiaomin, Dong Yanlei. Application of Seismic Sedimentology to Subaqueous Fan Complex Systems:A Case Study on Palaeogene He3 Section in Biyang Sag [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 57-64.
[11] Cao Yingchang, Zhang Huina, Xi Kelai, Zhao Xianzheng, Zhou Lei, Cui Zhouqi, Jin Jiehua. Petrophysical Parameter Cutoff and Controlling Factors of Medium- Deep Effective Reservoirs of Palaeogene in Southern Raoyang Sag [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1567-1579.
[12] Li Fulai, Wang Shitou, Miao Shunde, Yang Junxia, Xu Zhiyao, Li Wenshuai. Characteristics of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs of Chang 63 Member in Huaqing Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1580-1588.
[13] Yao Jingli, Zhao Yande, Deng Xiuqin, Guo Zhengquan, Luo Anxiang, Chu Meijuan. Controlling Factors of Tight Oil Reservior in Triassic Yanchang Formation in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 983-992.
[14] Zhang Liqiang, Lu Xuning, Ge Xueying, Zhang Shuguang. Neogene Sedimentary Models of Raoyang Sag in Liubei Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1021-1029.
[15] Du Runlin, Liu Zhan. Gravity Anomaly Extraction for Hydrocarbon Based on Particle Swarm Optimization and Cellular Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 926-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!