Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (5): 1505-1513.doi: 10.13229/j.cnki.jdxbgxb.20210934

Previous Articles    

Positioning of spherical detector for water supply pipeline based on ultrasonic method

Yun-fei LI1(),Wei-hao WANG1,Ming FU1,2,Fei ZHANG1,Yang ZHOU3   

  1. 1.Hefei Institute for Public Safety Research,Tsinghua University,Hefei 230601,China
    2.Anhui Province Key Laboratory of Human Safety,Hefei 230601,China
    3.Department of Engineering Physics,Tsinghua University,Beijing 100084,China
  • Received:2021-09-16 Online:2023-05-01 Published:2023-05-25

Abstract:

According to the positioning requirements of the spherical detector independently developed in the water supply pipeline, an arc-shaped composite ultrasonic vibrator is designed. Based on the piezoelectric equation, its vibration characteristics are analyzed theoretically and simulated, and the main vibration modes and the optimal working frequency are obtained. The impedance matching design between the ultrasonic transmitting circuit and the composite ultrasonic vibrator is studied to achieve the optimal ultrasonic energy conversion drive efficiency. Based on ultrasonic signal detection technology of wavelet transform envelope detection method, the accurate time of ultrasonic signal transmission is calculated. The spherical detector positioning system is realized. After testing, the static ranging positioning accuracy of 100 meters of pipeline length is 2%, the dynamic positioning distance reaches 170 meters, and the error between the calculated distance and the inertial navigation data is not more than 6%, which meets the real-time positioning requirements of the spherical detector in the water supply pipeline.

Key words: detection technology, water supply pipeline, spherical detector, ultrasonic positioning, composite ultrasonic vibrator, impedance matching, envelope detection

CLC Number: 

  • TH822

Fig.1

Composition of ultrasonic positioning system of spherical detector"

Fig.2

Circular composite ultrasonic transducer structure"

Fig.3

Schematic diagram of ultrasonic transmitter circuit"

Fig.4

Piezoelectric transducer equivalent circuit model"

Fig.5

Piezoelectric transducer impedance matching circuit"

Table 1

Radial vibration frequency of arc-shaped contact surface"

频率/Hz振型
48 196厚向为主带有径向振动
51 929径向振动
76 553径向振动为主有弯曲振动
81 219径向振动

Fig.6

Ultrasonic transmitter circuit simulation"

Fig.7

Wavelet transform envelope detection simulation"

Fig.8

Measured waveforms of ultrasonic vibrator under different frequency driving signals"

Fig.9

Schematic diagram of static test pipeline"

Table 2

Result of static distance test"

实际距离/m测试距离/m相对误差/%实际距离/m测试距离/m相对误差/%
1010.121.207071.331.90
2019.74-1.308079.01-1.24
3030.381.279091.551.72
4039.46-1.35100101.341.34
5049.28-1.44102100.86-1.12
6060.631.05105102.79-2.11

Fig.10

Location results based on actual water supply pipelines"

1 郭新蕾, 马慧敏, 李甲振, 等.管道系统漏损控制技术进展[J].水利水电技术, 2018, 49(6): 65-71.
Guo Xin-lei, Ma Hui-min, Li Jia-zhen, et al. Review on advance of technique for leakage control of pipeline system[J]. Water Resources and Hydropower Engineering, 2018, 49(6): 65-71.
2 周扬, 李云飞, 袁宏永, 等.基于听觉显著图的长输管道漏失检测算法[J].吉林大学学报: 工学版, 2020, 50(4): 1487-1494.
Zhou Yang, Li Yun-fei, Yuan Hong-yong, et al. Identification method of long distance pipeline leakage based on auditory saliency map[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1487-1494.
3 周扬, 张飞, 李云飞, 等. 一种管道状态检测器: 中国[P].
4 刘艳亮, 张海平, 徐彦田, 等.全球卫星导航系统的现状与进展[J].导航定位学报, 2019, 7(1): 18-21+27.
Liu Yan-liang, Zhang Hai-ping, Xu Yan-tian, et al. Development status and trend of global satellite navigation system[J]. Journal of Navigation and Positioning, 2019, 7(1): 18-21+27.
5 王庆峰, 李跃辉, 徐建庆, 等. GPS卫星定位技术在埋地管道腐蚀检测中的应用[J].油气田地面工程, 2003, 22(12): 32.
Wang Qing-feng, Li Yue-hui, Xu Jian-qing, et al. Application of GPS satellite positioning technique to monitor corrosion state of buried pipeline[J]. Oil-gas field Surface Engineering, 2003, 22(12): 32.
6 徐航. 基于矢量磁测的水下管线路由技术研究[D]. 杭州: 杭州电子科技大学机械工程学院, 2020.
Xu Hang. Research on underwater pipeline routing technology based on vector magnetic measurement [D]. Hangzhou: School of Mechanical Engineering, Hangzhou Dianzi University, 2020.
7 Huang K, Zheng D Z, Liu R, et al. The positioning receiver system of pipeline inner detector based on extremely low frequency electromagnetic signal[C]∥13th IEEE International Conference on Electronic Measurement & Instruments, Yangzhou, China, 2017: 145-150.
8 Qi H, Zhang X, Chen H, et al. Tracing and localization system for pipeline robot[J]. Mechatronics, 2009, 19(1): 76-84.
9 Kemppainen A, Haverinen J, Juha R. A distributed multi-robot sensing system using an infrared location system[C]∥ICINCO 2007, Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation 1, Angers, France, 2007: 280-283.
10 Liu Z, Krys D. The use of laser range finder on a robotic platform for pipe inspection[J]. Mechanical Systems and Signal Processing, 2012, 31: 246-257.
11 刘波, 潘舟浩, 李道京, 等.基于毫米波InISAR成像的运动目标探测与定位[J].红外与毫米波学报, 2012, 31(3): 258-264.
Liu Bo, Pan Zhou-hao, Li Dao-jing, et al. Moving target detection and location based on millimeter-wave InISAR imaging[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 258-264.
12 燕学智, 王树勋, 马中胜, 等.基于超声红外定位导航研制自动引导车辆系统[J].吉林大学学报: 工学版, 2006, 36(2): 242-246.
Yan Xue-zhi, Wang Shu-xun, Ma Zhong-sheng, et al. Automatic guided vehicle system based on localization and navigation by ultrasonic and infrared[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(2): 242-246.
13 Saad M M.High-accuracy reference-free ultrasonic location estimation[J].IEEE Transactions on Instrumentation and Measurement,2012,61(6): 1561-1570.
14 周乾, 曾周末, 黄新敬, 等.基于主动声学的管道球形内检测器示踪定位方法[J].仪器仪表学报, 2020, 41(8): 217-225.
Zhou Qian, Zeng Zhou-zhou, Huang Xin-jing, et al. Tracing and localization method of spherical inner detector for pipelines based on active acoustics[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 217-225.
15 李云飞, 杨效龙, 张飞, 等.管道检测用圆弧形复合超声波振子设计[J].华中科技大学学报: 自然科学版, 2021, 49(3): 34-39.
Li Yun-fei, Yang Xiao-long, Zhang Fei, et al.Structural design and characteristic analysis of circular arc compound ultrasonic vibrator for pipeline inspection[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(3): 34-39.
16 Pommier-Budinger V, Budinger M, Martinez J,et al. Design method of metallic and composite smart structures with piezoelectric actuators[J]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009(1): 1361-1368.
17 李云飞, 张飞, 周扬, 等.用于金属密闭空间定位的超声波电路分析与设计[J].传感器与微系统, 2020, 39(5): 68-70.
Li Yun-fei, Zhang Fei, Zhou Yang, et al. Analysis and design of ultrasonic circuit for metal confined space positioning[J]. Transducer and Microsystem Technologies, 2020, 39(5): 68-70.
18 韩丽轩, 于保华, 胡小平.功率超声压电换能器阻抗匹配电路参数化设计[J].压电与声光, 2015, 37(4): 713-716.
Han Li-xuan, Yu Bao-hua, Hu Xiao-ping. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer[J]. Piezoelectric & Acousto-Optics, 2015, 37(4): 713-716.
19 徐宏杰, 罗惠刚.基于小波变换的干涉信号包络提取方法研究[J].半导体光电, 2017, 38(3): 406-409+413.
Xu Hong-jie, Luo Hui-gang. Interference signal envelope extraction of based on wavelet transform method[J]. Semiconductor Optoelectronics, 2017, 38(3): 406-409+413.
20 杨慧娟, 曲喜强, 韩焱.基于小波变换的声波信号包络提取[J].华北工学院学报, 2004(4): 300-302.
Yang Hui-juan, Qu Xi-qiang, Han Yan. Extraction of acoustic signal envelope on the basis of wavelet transform[J]. Journal of North China Institute of Technology, 2004(4): 300-302.
21 刘伯胜, 雷家煜. 水声学原理[M](第2版). 哈尔滨: 哈尔滨工程大学出版社, 2010.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!