Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2338-2347.doi: 10.13229/j.cnki.jdxbgxb.20221373

Previous Articles     Next Articles

Three-dimensional vehicle multi-target tracking based on trajectory optimization

Hua CAI1(),Ting-ting KOU1,2,Yi-ning YANG3(),Zhi-yong MA4,Wei-gang WANG4,Jun-xi SUN5   

  1. 1.School of electronic information engineering, Changchun University of Science and Technology, Changchun 130022, China
    2.Industrial College of Artificial Intelligence, Changchun University of Architecture, Changchun 130604, China
    3.National Key Laboratory of Electromagnetic Space Security, Tianjin 300308, China
    4.No. 2 Department of Urology, the First Hospital of Jilin University, Changchun 130061, China
    5.School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
  • Received:2022-10-26 Online:2024-08-01 Published:2024-08-30
  • Contact: Yi-ning YANG E-mail:caihua@cust.edu.cn;yangyining53@cetc.com.cn

Abstract:

In order to solve the problem of poor tracking effect of multi-target tracking algorithm in the case of occlusion, a multi-target tracking algorithm based on 3D point cloud detection is proposed. The 3D target detector based on point cloud is used to detect the vehicle target and obtain the location information of the 3D target; The target position in the next frame is predicted by tracking the target position in the current frame through a three-dimensional Kalman filter; The intersection ratio of 3D center point space distance and cross-union ratio of bird's eye view is fused as the weight, and the improved Hungarian algorithm is used for data association; Aiming at the problem of label switching before and after occlusion, a trajectory optimization algorithm is proposed. Experiments were conducted on KITTI dataset, and the vehicle tracking accuracy and tracking accuracy reached 84.71% and 86.63% respectively. Under the same threshold, this method is 6.28% and 0.39% higher than AB3DMOT respectively. Experimental results show that this algorithm can effectively improve the performance of 3D multi-target tracking.

Key words: computer version, multi-target tracking, 3D Kalman filter, trajectory optimization, improved Hungarian algorithm

CLC Number: 

  • TP391.4

Fig.1

Overall structure diagram of 3D target detection"

Fig.2

BEV-IOU"

Fig.3

Car tracking results under occlusion"

Fig.4

Algorithm flow of this paper"

Table 1

Ablation experimental results on KITTI tracking verification set"

算法匹配标准sAMOTA↑AMOTA↑AMOTP↑MOTA↑MOTP↑ID_SW↓
3DIOU+3D卡尔曼滤波IOUthres=0.2593.2845.4377.4186.2478.430
BEV-IOU+3D卡尔曼滤波IOUthres=0.2593.0346.2284.4385.0084.381
BEV-IOU+2D卡尔曼滤波IOUthres=0.2591.7844.8876.9585.2878.69

BEV-IOU+3D卡尔曼滤波+

三维中心点空间距离

IOUthres=0.2593.5546.8384.6186.4184.681
本文IOUthres=0.2593.7446.9984.7486.6384.710

Table 2

Validation sets of different algorithms on KITTI datasets quantified 3D tracking results"

算法输入数据匹配标准sAMOTA↑AMOTA↑AMOTP↑MOTA↑MOTP↑ID_SW↓FPS↑
mmMOT2D+3DIOUthres=0.2570.6133.0872.4574.0778.16104.8(GPU)
IOUthres=0.763.9124.9167.3251.9180.7124
FANTrack2D+3DIOUthres=0.2582.9740.0375.0174.3075.243525(GPU)
IOUthres=0.762.7224.7166.0649.1979.0138
FLOWMOT3DIOUthres=0.2590.5643.5176.0885.1379.371-
IOUthres=0.773.2929.5167.0662.6782.251
AB3DMOT3DIOUthres=0.2593.2845.4377.4186.2478.430207.4(CPU)
IOUthres=0.769.8127.2667.0057.0682.430
本文算法3DIOUthres=0.2593.7446.9984.7486.6384.71086.2(CPU)
IOUthres=0.774.8432.7674.0465.8387.810

Fig 5

Tracking performance of each algorithm is marked by MOTA and MOTP"

Fig.6

Visual display results"

Fig. 7

Comparison of visual tracking effects of two algorithms"

Fig. 8

Tracking effect under occlusion"

1 曲优, 李文辉. 基于多任务联合学习的多目标跟踪方法[J].吉林大学学报: 工学版, 2023, 53(10): 2932-2941.
Qu you, Li Wen-hui. Multi target tracking method based on multi task joint learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2932- 2941.
2 丁贵鹏, 陶钢, 庞春桥, 等. 基于无锚的轻量化孪生网络目标跟踪算法[J]. 吉林大学学报:理学版, 2023, 61(4): 890-898.
Ding Gui-peng, Tao Gang, Pang Chun-qiao, et al. Lightweight siamese network target tracking algorithm based on ananchor free[J]. Journal of Jilin University (Science Edition), 2023, 61(4): 890-898.
3 才华, 陈广秋, 刘广文, 等. 遮挡环境下多示例学习分块目标跟踪[J]. 吉林大学学报: 工学版, 2017, 47(1): 281-287.
Cai Hua, Chen Guang-qiu, Liu Guang-wen, et al. Novelty fragments-based target tracking with multiple instance learning under occlusions[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 281-287.
4 李晓峰, 任杰, 李东. 基于深度强化学习的移动机器人视觉图像分级匹配算法[J]. 吉林大学学报:理学版, 2023, 61(1): 127-135.
Li Xiao-feng, Ren Jie, Li Dong. Hierarchical matching algorithm of visual image for mobile robots based on deep reinforcement learning[J]. Journal of Jilin University (Science Edition), 2023, 61(1): 127-135.
5 Zhang W, Zhou H, Sun S, et al. Robust multi- modality multi-object tracking[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2365-2374.
6 Shenoi A, Patel M, Gwak J Y, et al. JRMOT: a real-time 3D multi-object tracker and a new large-scale dataset[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10335-10342.
7 Weng X S, Wang J R, Heldet D, et al. 3D multi-object tracking: a baseline and new evaluation metrics[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10359-10366.
8 Yin T, Zhou X, Krähenbühl P. Center-based 3D object detection and tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021:11779-11788.
9 Chen X, Kundu K, Zhang Z, et al. Monocular 3D object detection for autonomous driving[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2147-2156.
10 Li B Y, Sheng L, Zeng X Y, et al . G S3D: an efficient 3D object detection framework for autonomous driving[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1019-1028.
11 Charles R Q, Su H, Kaichun M, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77-85.
12 Shi S, Wang X, Li H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 770-779.
13 Charles R Q, Li Y, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, Long Beach, USA, 2017: 5099–5108.
14 Bergmann P, Meinhardt T, Leal-Taixé L. Tracking without bells and whistles[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 941-951.
15 Karunasekera H, Wang H, Zhang H. Multiple object tracking with attention to aearance, structure, motion and size[J]. IEEE Access, 2019, 7: 104423-104434.
16 Baser V, Balasubramanian V, Bhattacharyya P, et al. FANTrack: 3D multi-object tracking with feature association network[C]//2019 IEEE Intelligent Vehicles Symposium(IV), Paris, France, 2019:1426-1433.
17 Kim A, Ošep A, Leal-Taixé L. EagerMOT: 3D multi-object tracking via sensor fusion[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021: 11315-11321.
18 Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464-3468.
19 Patil A, Malla S, Gang H, et al. The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes[C]//2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 9552-9557.
20 Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354-3361.
21 Zhai G Y, Kong X, Cui J H, et al. Flowmot: 3D multi-object tracking by scene flow association[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Las Vegas, USA, 2020: 1048550.
22 翟光耀. 基于激光雷达的三维目标跟踪算法研究[D]. 杭州: 浙江大学控制科学与工程学院, 2021.
Zhai Guang-yao. 3D target tracking algorithm based on laser radar research[D]. Hangzhou: School of Control Science and Engineering of Zhejiang University, 2021.
[1] LI Ai-juan, LI Shun-ming, SHEN Huan, MIAO Xiao-dong. ACT-R based dynamic trajectory optimization method for intelligent vehicles [J]. 吉林大学学报(工学版), 2013, 43(05): 1184-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .