Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2338-2347.doi: 10.13229/j.cnki.jdxbgxb.20221373
Previous Articles Next Articles
Hua CAI1(),Ting-ting KOU1,2,Yi-ning YANG3(),Zhi-yong MA4,Wei-gang WANG4,Jun-xi SUN5
CLC Number:
1 | 曲优, 李文辉. 基于多任务联合学习的多目标跟踪方法[J].吉林大学学报: 工学版, 2023, 53(10): 2932-2941. |
Qu you, Li Wen-hui. Multi target tracking method based on multi task joint learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2932- 2941. | |
2 | 丁贵鹏, 陶钢, 庞春桥, 等. 基于无锚的轻量化孪生网络目标跟踪算法[J]. 吉林大学学报:理学版, 2023, 61(4): 890-898. |
Ding Gui-peng, Tao Gang, Pang Chun-qiao, et al. Lightweight siamese network target tracking algorithm based on ananchor free[J]. Journal of Jilin University (Science Edition), 2023, 61(4): 890-898. | |
3 | 才华, 陈广秋, 刘广文, 等. 遮挡环境下多示例学习分块目标跟踪[J]. 吉林大学学报: 工学版, 2017, 47(1): 281-287. |
Cai Hua, Chen Guang-qiu, Liu Guang-wen, et al. Novelty fragments-based target tracking with multiple instance learning under occlusions[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 281-287. | |
4 | 李晓峰, 任杰, 李东. 基于深度强化学习的移动机器人视觉图像分级匹配算法[J]. 吉林大学学报:理学版, 2023, 61(1): 127-135. |
Li Xiao-feng, Ren Jie, Li Dong. Hierarchical matching algorithm of visual image for mobile robots based on deep reinforcement learning[J]. Journal of Jilin University (Science Edition), 2023, 61(1): 127-135. | |
5 | Zhang W, Zhou H, Sun S, et al. Robust multi- modality multi-object tracking[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2365-2374. |
6 | Shenoi A, Patel M, Gwak J Y, et al. JRMOT: a real-time 3D multi-object tracker and a new large-scale dataset[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10335-10342. |
7 | Weng X S, Wang J R, Heldet D, et al. 3D multi-object tracking: a baseline and new evaluation metrics[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10359-10366. |
8 | Yin T, Zhou X, Krähenbühl P. Center-based 3D object detection and tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021:11779-11788. |
9 | Chen X, Kundu K, Zhang Z, et al. Monocular 3D object detection for autonomous driving[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2147-2156. |
10 | Li B Y, Sheng L, Zeng X Y, et al . G S3D: an efficient 3D object detection framework for autonomous driving[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1019-1028. |
11 | Charles R Q, Su H, Kaichun M, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77-85. |
12 | Shi S, Wang X, Li H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 770-779. |
13 | Charles R Q, Li Y, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, Long Beach, USA, 2017: 5099–5108. |
14 | Bergmann P, Meinhardt T, Leal-Taixé L. Tracking without bells and whistles[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 941-951. |
15 | Karunasekera H, Wang H, Zhang H. Multiple object tracking with attention to aearance, structure, motion and size[J]. IEEE Access, 2019, 7: 104423-104434. |
16 | Baser V, Balasubramanian V, Bhattacharyya P, et al. FANTrack: 3D multi-object tracking with feature association network[C]//2019 IEEE Intelligent Vehicles Symposium(IV), Paris, France, 2019:1426-1433. |
17 | Kim A, Ošep A, Leal-Taixé L. EagerMOT: 3D multi-object tracking via sensor fusion[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021: 11315-11321. |
18 | Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464-3468. |
19 | Patil A, Malla S, Gang H, et al. The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes[C]//2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 9552-9557. |
20 | Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354-3361. |
21 | Zhai G Y, Kong X, Cui J H, et al. Flowmot: 3D multi-object tracking by scene flow association[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Las Vegas, USA, 2020: 1048550. |
22 | 翟光耀. 基于激光雷达的三维目标跟踪算法研究[D]. 杭州: 浙江大学控制科学与工程学院, 2021. |
Zhai Guang-yao. 3D target tracking algorithm based on laser radar research[D]. Hangzhou: School of Control Science and Engineering of Zhejiang University, 2021. |
[1] | LI Ai-juan, LI Shun-ming, SHEN Huan, MIAO Xiao-dong. ACT-R based dynamic trajectory optimization method for intelligent vehicles [J]. 吉林大学学报(工学版), 2013, 43(05): 1184-1189. |
|