Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1129-1135.doi: 10.13229/j.cnki.jdxbgxb.20221560

Previous Articles    

Collaborative optimal scheduling of renewable energy systems based on improved MOEA/D algorithm

Xin-gang ZHAO1,2(),Zhen WANG1,2   

  1. 1.School of Economics and Management,North China Electric Power University,Beijing 102206,China
    2.Beijing Key Laboratory of New Energy and Low-Carbon Development,Beijing 102206,China
  • Received:2022-12-06 Online:2024-04-01 Published:2024-05-17

Abstract:

Microgrid with renewable energy system has high economy and environmental protection, and requires system load to be flexible and controllable, that is, resources can be coordinated for scheduling operation. Therefore, a collaborative optimal scheduling method for renewable energy system based on improved MOEA/D algorithm is proposed. Build key power generation models in renewable energy systems, including photovoltaic array model, wind power generation model and energy storage battery model. With the lowest energy consumption as the goal, build the system's collaborative optimal scheduling function, obtain the functional constraints of electric power and thermal power balance, and use the improved MOEA/D algorithm to solve the optimal solution of the function to achieve the collaborative optimal scheduling of renewable energy systems. The experimental results show that the proposed method has good SOC value control constraint ability, and the SOC value control result is the closest to the ideal state. Under the environmental optimization criterion, the system scheduling energy consumption is low, and the 24-hour energy consumption power is 0.6 kW.

Key words: MOEA/D algorithm, photovoltaic power generation, including renewable energy system, collaborative optimal scheduling, power consumption

CLC Number: 

  • TP242

Table 1

Experimental environment"

含可再生能源系统设备参数
含可再生能源功率2 000 kW
生产性能的储能模块1 000 kW/1 000 kW·h
电力储能第一单元2 500 kW/2 500 kW·h
电力储能第二单元2*2 000 kW/2 000 kW·h
电制冷机2*2 600 kW
燃气机2 040 kW
热储能模块1 720 kW/12 500 kW·h
燃气锅炉5 500 kW
余热吸收式冷温水机4 600 kW/3 450 kW
冷储能模块1 720 kW/12 500 kW·h

Fig.1

SOC value control results of three methods"

Fig.2

Energy consumption of three methods"

1 李长城,和敬涵,王颖,等.考虑分布式电源支撑作用的输配电系统协同恢复方法[J].电力自动化设备,2022,42(2):112-119.
Li Chang-cheng, He Jing-han, Wang Ying, et al. Coordinated restoration of transmission and distribution systems considering DG support[J]. Electric Power Automation Equipment, 2022,42(2): 112-119.
2 姚昊天,向月,刘俊勇.基于过网费动态更新的分布式电源多主体协同规划方法[J].电力系统自动化,2021,45(17):70-78.
Yao Hao-tian, Xiang Yue, Liu Jun-yong. Multi-agent collaborative planning method for distributed generators based on dynamic updating of network tariffs[J]. Automation of Electric Power Systems, 2021,45(17): 70-78.
3 常喜茂,田资.考虑储能电池的微电网群双层优化调度策略[J].热力发电,2021,50(8):112-120.
Chang Xi-mao, Tian Zi. Bi-level optimal dispatching strategy of microgrids system considering battery energy storage system [J]. Thermal Power Generation, 2021,50(8): 112-120.
4 宋晓芳,周海强,薛峰,等.计及源荷不确定性及频率安全的电力系统区间优化调度方法[J].电力自动化设备,2022,42(7):212-220.
Song Xiao-fang, Zhou Hai-qiang, Xue Feng, et al. Interval optimal dispatching method of power system considering source-load uncertainty and frequency security[J]. Electric Power Automation Equipment, 2022,42(7): 212-220.
5 黄煜,徐青山,夏元兴,等.考虑自适应传输备用的含风电电力系统双层随机调度方法[J].电力系统自动化,2021,45(20):29-37.
Huang Yu, Xu Qing-shan, Xia Yuan-xing, et al. Bi-level stochastic scheduling method for power system with wind power considering adaptive transmission reserve[J]. Automation of Electric Power Systems, 2021,45(20): 29-37.
6 江涵,岳程燕,严兴煜,等.高比例可再生能源系统惯量约束对灵活性分析的影响研究[J].电力系统保护与控制,2021,49(18):44-51.
Jiang Han, Yue Cheng-yan, Yan Xing-yu, et al. Influence of system inertia on flexibility resource analysis for an interconnection system with a high proportion of intermittent renewable energy[J]. Power System Protection and Control, 2021,49(18): 44-51.
7 周平,孙悦,康朋,等.光热电站的高比例可再生能源系统混合储能容量优化配置方法[J].电工电能新技术,2021,40(3):22-31.
Zhou Ping, Sun Yue, Kang Peng, et al. Optimal hybrid energy storage capacity configuration for CSP integrated power systems with high renewable energy penetration[J]. Advanced Technology of Electrical Engineering and Energy, 2021,40(3): 22-31.
8 刘海涛,许伦,郝思鹏,等.基于离散概率分布的分布式光伏电站优化配置[J].电气传动,2021,51(7):75-80.
Liu Hai-tao, Xu Lun, Hao Si-peng, et al. Optimal configuration of distributed PV power plant based on discrete probability distribution[J]. Electric Drive, 2021,51(7): 75-80.
9 龙兵,候兰宝.混合区间删失下Rayleigh分布的可靠性分析[J].统计与决策,2020,36(13):43-47.
Long Bing, Hou Lan-bao. Reliability analysis of Rayleigh distribution under hybrid interval censoring[J]. Statistics & Decision, 2020, 36(13): 43-47.
10 曹雪铭,黄健,张言茹,等.基于改进型构筑算法对城轨车载蓄电池系统优化研究[J].铁道学报,2021,43(9):56-62.
Cao Xue-ming, Huang Jian, Zhang Yan-ru, et al. Optimization study of onboard storage-battery system for urban rail transit based on modified greedy algorithm[J]. Journal of the China Railway Society, 2021,43(9): 56-62.
11 冯国会,张磊,常莎莎,等.可再生能源耦合供热系统在严寒地区的适宜性分析[J].可再生能源,2022,40(7):881-889.
Feng Guo-hui, Zhang Lei, Chang Sha-sha, et al. Suitability analysis of renewable energy coupled heating system in severe cold area[J]. Renewable Energy Resources, 2022,40(7): 881-889.
12 姚浩,黄开天,余宏洲,等.基于共享Cache划分的电力芯片能耗优化技术[J].电力科学与技术学报,2021,36(5):28-34.
Yao Hao, Huang Kai-tian, Yu Hong-zhou, et al. Shared Cache partition-based optimization technology for the power chip energy consumption[J]. Journal of Electric Power Science And Technology,2021,36(5): 28-34.
13 龚光彩,黄喜文,周富玉.一种基于PID控制算法的分布参数法压缩式空气源热泵模型[J].科学技术与工程,2020,20(15):6066-6072.
Gong Guang-cai, Huang Xi-wen, Zhou Fu-yu. A Compressed air source heat pump model by distributed parameter method in PID control algorithm[J]. Science Technology and Engineering, 2020,20(15): 6066-6072.
14 白青峰.可再生能源发电与核电协调调度及发展[J].中国电力,2020,53(2):105-111.
Bai Qing-feng.Coordinative dispatch and development of renewable energy and nuclear power generation[J]. Electric Power, 2020,53(2): 105-111.
15 施静容,李勇,贺悝,等.一种提升交直流混合微电网动态特性的综合惯量控制方法[J].电工技术学报,2020,35(2):337-345.
Shi Jing-rong, Li Yong, He Li, et al. A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020,35(2): 337-345.
16 王植,马振,胡鹏涛,等.孤岛交直流混合微电网功率互助策略[J].电力建设,2021,42(1):76-84.
Wang Zhi, Ma Zhen, Hu Peng-tao, et al.Strategies for power mutual assistance in isolated island crossing DC hybrid microgrid[J]. Electric Power Construction, 2021,42(1): 76-84.
17 李林威,林伟,杨知方,等.考虑多时段耦合特性的联络线功率可行域确定方法[J].电力系统保护与控制,2020,48(23):64-72.
Li Lin-wei, Lin Wei, Yang Zhi-fang, et al. Characterizing a tie-line transfer capacity region considering time coupling in day-ahead multi-period dispatch[J]. Power System Protection and Control, 2020,48(23): 64-72.
18 郝秦霞,汪连连,张金锁.基于R2-MOEA/D算法的顶板支护决策模型[J].工矿自动化,2021,47(10):77-84.
Hao Qin-Xia, Wang Lian-lian, Zhang Jin-suo. Decision model of roof support based on R2-MOEA/D algorithm[J]. Industry and Mine Automation, 2021, 47(10): 77-84.
19 朱博文,龚懿,陈再扬,等.基于Pareto最优解的跨流域调水泵站多目标优化运行研究[J].灌溉排水学报,2022,41(2):131-139.
Zhu bo-wen, Gong Yi, Chen Zai-yang, et al. Multi- objective optimization of cross-basin water pump station solved by the Pareto method[J]. Journal of Irrigation and Drainage, 2022,41(2): 131-139.
20 魏齐鸣,杨太华,高余奇.基于混合潮流算法的多能源互补调度仿真研究[J].计算机仿真,2021,38(11):77-81.
Wei Qi-ming, Yang Tai-hua, Gao Yu-qi.Simulation research on multi-energy complementary dispatch based on hybrid power flow algorithm[J].Computer Simulation,2021,38(11):77-81.
[1] Yang LIU,Ji-cheng LIU. Collaborative optimization scheduling method of clean energy based on big data and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1443-1448.
[2] SHEN Jing, ZHANG Xiao-lin. Low power consumption CMOS concurrent dual-band low noise amplifier [J]. 吉林大学学报(工学版), 2013, 43(02): 485-490.
[3] WANG Zeng-hui, HUANG Dong-yan, LI Zhuo-shi, JIA Hong-lei, WAN Bao-cheng. Universal the blade the broken stubble power consumption influence of the working parameters of the rotary tiller broken stubble [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 122-125.
[4] JIN Dong-cheng, WANG Ke, FENG Lin-han. Optimized IEEE 802.11s path selection method based on node power consumption [J]. , 2012, 42(05): 1286-1290.
[5] JIN Yu-shan, HE Xing-ran, LIU Rui-kai, HUANG Yong-ping. Design of low power consumption based on MOST networks [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 199-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!