Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 1072-1081.doi: 10.13229/j.cnki.jdxbgxb.20230566

Previous Articles    

Filter design and performance analysis based on vitis HLS

Hai-long ZHANG1,2,3,4(),Xu DU1,2,Meng ZHANG1,2,Ya-zhou ZHANG1,2,Jie WANG1,4,Xin-chen YE1,4,Wan-qiong WANG1,Jia LI1,Han WU1,2,Ting ZHANG1,2   

  1. 1.Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China
    2.University of;Chinese Academy of Sciences,Beijing 100049,China
    3.Key Laboratory of Radio Astronomy,Chinese Academy of;Sciences,Nanjing 210008,China
    4.National Astronomical Data Center,Beijing 100101,China
  • Received:2023-06-06 Online:2025-03-01 Published:2025-05-20

Abstract:

To address the problems of low programming efficiency, high development difficulty and high Vivado HLS resource utilization in the hardware development process, a pipelined direct parallel finite impulse response filter was designed and implemented with a 127-order Hamming window using Vivado and Vitis HLS platforms. And the filtering performance of HDL FIR IP, HLS FIR IP, and XILINX FIR IP in the Vivado Simulator environment was compared. Detailed analysis was conducted on the differences in resource utilization, timing, power consumption and execution time among different implementation methods. The experimental results show that under the same conditions, the resource utilization of HLS FIR IP is reduced by 1% compared with HDL FIR IP and XILINX FIR IP, the execution time is reduced by 24.5% and 808.2% respectively, and the code size is saved by 98.5%. Based on the proposed experimental method, a comparison was made with previous work to objectively analyze the efficiency differences of different development platforms and methods under certain conditions. The results show that our design method can significantly reduce the usage of logic units and storage resources and improve the development efficiency.

Key words: astroinformatics, high-level synthesis, FIR filter, vitis HLS, verilog

CLC Number: 

  • TP301.6

Fig.1

Comparison of frequency response of different window function"

Fig.2

Structure of direct FIR filter"

Fig.3

High level synthesis flowchart"

Fig.4

HDL FIR block design diagram"

Fig.5

HLS FIR block design diagram"

Fig.6

XILINX FIR block design diagram"

Fig.7

Comparison of filtering results in time domain"

Fig.8

Comparison of filtering results in frequency domain"

Fig.9

Comparison chart of resource usage quantity"

Fig.10

Comparison chart of resource utilization rate"

Table 1

Time series comparison table"

参 数HDL FIR IPHLS FIR IPXILINX FIR IP
最差负时序裕量/ns8.794.5829.728
最差保持时序裕量/ns0.0220.0240.011
最差脉冲宽度时序裕量/ns5.6775.6775.677
时序裕量之和/ns14.48910.28315.416

Table 2

Power consumption comparison table"

HDL FIR IPHLS FIR IPXILINX FIR IP
片上总功耗/W1.2431.2281.137
预计结温/℃26.026.026.0
热裕度/℃74.074.074.0
有效热阻/(℃·W-10.80.80.8

Fig.11

Arrival time waveform"

Table 3

Performance comparison table of HDL and HLS under different implementation methods"

方法HDL语言HLS工具比较项

资源使用率

之和/%

时序裕量之和

或时钟速度

总功耗/W执行时间

编程时间

或代码行

Zwagerman13VerilogVivado HLS 2013.4

图像

滤波

HDL:129.8

HLS:133.1

HDL:200 MHz

HLS:181 MHz

--

HDL:33 h

HLS:15 h

Roberto MillónVHDLVivado HLS 2019.1

Sobel

边缘检测

HDL:2.9

HLS:8.4

--

HDL:58 ms

HLS:82.9 ms

HDL:493LOC

HLS:90LOC

Srilakshmi等VHDL

Vitis HLS

N/A

CNN卷

积层

HDL:0.7

HLS:2.4

----
本文Verilog

Vitis HLS

2022.1

FIR

滤波器

HDL:19.83

HLS:18.86

XILINX:19.85

HDL:14.5 ns

HLS:10.3 ns

XILINX:15.4 ns

HDL:1.243

HLS:1.228

XILINX:1.137

HDL:122 ns

HLS:98 ns

XILINX:890 ns

HDL:2397LOC

HLS:36LOC

1 周柚, 杨森, 李大琳, 等. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报: 工学版,2019, 49(6): 2051-2057.
Zhou You, Yang Sen, Li Da-lin, et al. Acceleration platform for face detection and recognition based on field programmable gate array[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 2051-2057.
2 汤嘉武, 郑龙, 廖小飞, 等.面向高性能图计算的高效高层次综合方法[J]. 计算机研究与发展, 2021, 58(3): 467-478.
Tang Jia-wu, Zheng Long, Liao Xiao-fei, et al. Effective high-level synthesis for high-performance graph processing[J]. Journal of Computer Research and Development, 2021, 58(3): 467-478.
3 Schledt D, Kebschull U, Blume C. Developing a cluster-finding algorithm with Vitis HLS for the CBM-TRD[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers[J].Detectors and Associated Equipment, 2023, 1047: No.167797.
4 Inc Xilinx. Versal ACAP hardware, IP, and platform development methodology guide (UG 1387) [EB/OL].[2022-11-16]..
5 Inc Xilinx. Vivado design suite user guide: designing with IP (UG 896) [EB/OL]. [2022-11-02].
6 Lan H, Li D L, Wang K P, et al. A survey on performance optimization of high-level synthesis tools[J]. Journal of Computer Science and Technology, 2020, 35: 697-720.
7 Millón R, Frati E, Rucci E. A comparative study between HLS and HDL on SoC for image processing applications[J/OL].[2023-05-16].
8 Srilakshmi S, Madhumati G L. A comparative analysis of HDL and HLS for developing CNN accelerators[C]∥Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2023: 1060-1065.
9 张海龙, 张萌, 张亚州, 等. 基于临界采样多相滤波器组的宽带信号信道化器设计与实现[J]. 吉林大学学报: 工学版, 2023, 53(8): 2388-2394.
Zhang Hai-long, Zhang Meng, Zhang Ya-zhou, et al. Design and implementation of wideband signal channelizer based on critical sampling polyphase filter bank[J]. Journal of Jilin University (Engineering and Technology Edition),2023, 53(8): 2388-2394.
10 Nosov E, Marshalov D, Fedotov L, et al. Multifunctional digital backend for quasar VLBI network[J]. Journal of Instrumentation, 2021, 16(5): No.P05003.
11 Smith J P, Bailey J I, Tuthill J, et al. A high-throughput oversampled polyphase filter bank using vivado hls and pynq on a rfsoc[J]. IEEE Open Journal of Circuits and Systems, 2021, 2: 241-252.
12 Hossain K, Ahmed R, Haque A, et al. A review of digital fir filter design in communication systems[J]. International Journal of Science and Research (IJSR), 2021, 10(2): 1380-1391.
13 Zwagerman M D. High level synthesis, a use case comparison with hardware description language[D].Michigan: Grand Valley State University, 2015.
14 Inc Xilinx.2022.1 release highlights[DB/OL].[2023-05-16] ..
15 Inc Xilinx. What's new for the vitis software platform[DB/OL].[2023-05-16] .
[1] Hai-long ZHANG,Meng ZHANG,Ya-zhou ZHANG,Jie WANG,Xin-chen YE,Wan-qiong WANG,Jia LI,Xu DU,Ting ZHANG. Channelization of wideband signal based on critical sampling polyphase filter banks [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2388-2394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!