Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 361-374.doi: 10.13229/j.cnki.jdxbgxb20180739

Previous Articles    

Real⁃time interpretation system of variable spray prescription map based on plant protection UAV

Rui-tao GAO1(),Jian SHAN1,Zhou YANG1(),Sheng WEN2,Yu-bin LAN1,2,Quan-yong ZHANG1,2,Yang WANG1   

  1. 1. College of Engineering, South China Agricultural University, Guangzhou 510642, China
    2. National Center for International Collaboration Research on Precision Agriculture Aviation Pesticides Spraying Technology, Guangzhou 510642, China
  • Received:2018-07-20 Online:2020-01-01 Published:2020-02-06
  • Contact: Zhou YANG E-mail:greater@scau.edu.cn;yangzhou@scau.edu.cn

Abstract:

This paper develops a real-time interpretation system of variable spray prescription map based on ARM architecture. The system can extract the parameters such as the position, speed and height of the drone in real time, and address it in the prescription map to read the corresponding grid prescription value, and send to the variable spray system. The addressing uses a delay algorithm to optimize the design so that the interpretation results meet the operational requirements. The interpretation system and the variable system were built on the DJI MG-1 plant protection drone, and the implementability and accuracy of the interpretation system were tested through experiments. The results show that the system can successfully interpret the variable application prescription map in real time. Within the effective spray width, the grid center and grid boundary variable results are significant, consistent with the preset prescription value. The collection with the droplet deposition amount is 0.005~0.7658 μL/cm2, the droplet coverage density is 12~72/cm2, the variable conversion time is about 0.5 s, and the variable accuracy is 1 m.

Key words: agriculture engineering, variable spray, prescription chart, unmanned aerial vehicle, UAV, plant protection

CLC Number: 

  • S25

Fig.1

Composition structure of plant protection UAV variable spray real?time decoding system"

Fig.2

Interpreting system hardware components"

Fig.3

Work site positioning"

Fig.4

ArcMap generated prescription"

Fig.5

Coordinate conversion diagram"

Fig.6

Flow chart of GPS software"

Table 1

GNSS receiver parameters"

项目数值

产品型号

定位精度

更新频率

运行温度

输出信息

定向精度

输入电压

电台频率范围

电台通信距离

Sky2

平面:1.0 cm

高程:2.0 cm

5 Hz

-25~65 ℃

NMEA 0183

GGA,GSA,GSV,RMC,VTG,GLL

0.2°RMS@1.0 m基线

6~36 V

840~845 MHz

3 km

Fig.7

Flow chart of schematic diagram translation system"

Fig.8

PWM conversion system hardware components"

Fig.9

Flow chart of variable control system"

Fig.10

Experimental platform"

Fig. 11

UAV spray test site map"

Fig.12

Sampling point layout"

Table 2

Test parameters table"

试验号平均温度/℃平均湿度/%平均风速及风向/(m·s-1)处方值/(L·hm-2)飞行速度/(m·s-1)
栅格1栅格2栅格3
129.873.31.08/SE810162
229.970.61.22/SE68123
330.172.80.45/SE4584
430.269.41.04/SE3465

Fig.13

Sampling point water sensitive paper and Mylar card"

Fig .14

Fluorescence spectroscopic division"

Table 3

Diameter of droplet volume and spray angle at duty ratio of different PWM square waves"

占空比/%喷雾角/(°)占空比/%喷雾角/(°)
40987598
459980101
509785102
559990104
609895105
6599100105
70100

Fig.15

Spray angle of different PWM square wave duty ratio"

Fig.16

Test flight path"

Table 4

Application flow deviation statistics"

飞行速度

/(m·s-1)

处方值

/(L·hm-2)

目标流量

/(L·min-1)

实际流量

/(L·min-1)

偏差

/%

280.207 20.194 06.37
100.294 50.289 41.73
160.418 40.409 72.08
2.580.262 90.273 13.88
100.356 40.344 73.28
160.526 80.515 92.07
360.232 40.229 01.46
80.294 50.280 14.89
120.45720.449 31.73
3.560.262 90.269 42.47
80.356 40.362 41.68
120.526 80.511 62.89
440.207 20.195 45.69
50.294 50.286 52.72
80.418 40.414 50.93
4.540.262 90.254 73.12
50.356 40.361 51.43
80.526 80.516 41.98
530.262 90.246 56.24
40.356 40.339 24.83
60.526 80.530 60.72

Table 5

Droplet coverage density statistics"

试验组次采样点采集带
栅格1L4栅格2L10栅格3
L1L2L3L5L6L7L8L9L11L12L13
4-43450534135539
-313444239852710
-215121411171810181611222623
-122212526252920283326293828
024463932516646293534274272
122223023333633223435245238
216242820362926232722282824
3109133910614791098
40635435266567

Fig.17

Water sensitive paper scanned grayscale image"

Fig.18

Distribution of droplet deposition in center of grid"

Table 6

Test 1 droplet deposition in target area"

栅格采集带位置

总沉积量

/(μL·cm-2

每个采样点平均沉积量/(μL·cm-2

雾滴分布

均匀性/%

1L20.356 00.071 249.74
L30.303 50.060 743.19
L40.483 00.096 641.26
2L50.515 50.103 168.14
L60.449 00.089 871.96
L80.437 50.087 577.10
L90.622 50.124 579.32
L100.749 50.149 975.53
3L110.726 00.145 263.42
L120.748 00.149 663.81
1 赵啸宇, 翟恩昱, 赵德天, 等. 面向设施农业的背负式喷杆喷雾机结构改进与性能试验[J]. 中国农机化学报, 2017, 38(11): 43-47.
Zhao Xiao-yu, Zhai En-yu, Zhao De-tian, et al. Structural improvement and performance test of knapsack sprayer for facility agriculture[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(11): 43-47.
2 Al-Gaadi K A, Ayers P D. Integrating GIS and GPS into a spatially-variable-rate herbicide application system[J]. Applied Engineering in Agriculture, 1999, 15(4): 255-262.
3 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59.
Zhang Dong-yan, Lan Yu-bin, Chen Li-ping, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59.
4 Mohammadzamani D, Minaei S, Alimardani R, et al. Variable rate herbicide application using the global positioning system for generating a digital management map[J]. International Journal of Agriculture and Biology, 2009, 11(2): 178-182.
5 Yang Chen-hai. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application[J]. 2017, 60(3): 635-644.
6 Guan Y, Chen D, He K, et al. Review on research and application of variable rate spray in agriculture[C]∥ IEEE 10th Conference on Industrial Electronics and Applications, New Zealand, 2015: 1575-1580.
7 尹东富, 陈树人, 裴文超, 等. 基于处方图的室内变量喷药除草系统设计[J]. 农业工程学报, 2011, 27(4): 131-135.
Yin Dong-fu, Chen Shu-ren, Pei Wen-chao, et a1. Design of map-based indoor variable weed spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering,2011, 27(4): 131-135.
8 王玲, 兰玉彬, Hoffmann W C, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016, 47(1): 15-22.
Wang Ling, Lan Yu-bin, Hoffmann W C, et al. Design of variable spraying system and influencing factors on droplets deposition of small UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 15-22.
9 陈志刚, 陈梦溪, 魏新华, 等. 基于北斗定位的农田变量处方施药喷雾系统[J]. 排灌机械工程学报, 2015, 33(11): 965-970.
Chen Zhi-gang, Chen Meng-xi, Wei Xin-hua, et al. Variable prescription pesticide spraying system for farmland based on the Beidou navigation satellite system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(11): 965-970.
10 蒋焕煜, 周鸣川, 李华融, 等. PWM变量喷雾系统动态雾滴分布均匀性实验[J]. 农业机械学报, 2015, 46(3): 73-77.
Jiang Huan-yu, Zhou Ming-chuan, Li Hua-rong, et al. Experiment on dynamic droplet distribution uniformity forPWMvariablespray system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 73-77.
11 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72.
Qiu Bai-jing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72.
12 朴丽丽, 陈英义, 申维, 等. 基于ArcGIS Engine的农用地定级决策支持系统[J]. 农业工程学报, 2008, 24(增刊2): 93-96.
Li-li Piao, Chen Ying-yi, Shen Wei, et al. Grading decision support system for farmland based on ArcGIS Engine[J]. Transactions of the CSAE, 2008, 24(Sup.2): 93-96.
13 宋宜洛. 精准施肥处方图生成系统研究与实现[D]. 成都: 电子科技大学计算机科学与工程学院, 2013.
Song Yi-luo. Variable precision agriculture research and implementation fertilization prescription map generation system[D]. Chengdu: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 2013.
14 周舟, 王秀, 王俊, 等. 基于GIS的变量喷药决策支持系统[J]. 农业工程学报, 2008, 24(增刊2): 123-126.
Zhou Zhou, Wang Xiu, Wang Jun, et al. Decision support system for variable-rate spraying based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(Sup.2): 123-126.
15 Thorp K R, Tian L F. Performance Study of variable-rate herbicide applications based on remote sensing imagery[J]. Biosystems Engineering, 2004, 88(1): 35-47.
16 王利霞, 张书慧, 马成林, 等. 基于ARM 的变量喷药控制系统设计[J]. 农业工程学报, 2010, 26(4): 113-118.
Wang Li-xia, Zhang Shu-hui, Ma Cheng-lin, et al. Design of variable spraying system based on ARM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 113-118.
17 Sökefeld M. Variable Rate Technology for Herbicide Application[M]. Berlin: Springer, 2010: 335-347.
18 Fulton J P, Shearer S A, Higgins S F, et al. Rate response assessment from various granular VRT applicators[J]. Transactions of the American Society of Agricultural Engineers, 2005, 48(6): 2095-2103.
19 Yuan D B, Cui X M, Wang G, et al. Research on improving the accuracy of positioning data obtained by GPS module[J]. Key Engineering Materials, 2012, 500: 609-615.
20 李冰, 曾连荪. GPS定位信息提取及应用[J]. 电子设计工程, 2012, 20(12): 72-74.
Li Bing, Zeng Lian-sun. GPS positioning information extraction and application[J]. Electronic Design Engineering, 2012, 20(12): 72-74.
21 邓巍, 丁为民, 何雄奎. PWM间歇式变量喷雾的雾化特性[J]. 农业机械学报, 2009, 40(1): 74-78.
Deng Wei, Ding Wei-min, He Xiong-kui. Spray characteristics of PWM-based intermittent pulse variable spray[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 74-78.
22 邱白晶, 李佐鹏, 吴昊, 等. 变量喷雾装置响应性能的试验研究[J]. 农业工程学报, 2007, 23(11): 148-152.
Qiu Bai-jing, Li Zuo-peng, Wu Hao, et al. Experimental study on variable-rate spraying equipment response capability[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11): 148-152.
23 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46.
Chen Sheng-de, Lan Yu-bin, Li Ji-yu, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 40-46.
24 王大帅, 张俊雄, 李伟,等. 植保无人机动态变量施药系统设计与试验[J]. 农业机械学报, 2017, 48(5): 86-93.
Wang Da-shuai, Zhang Jun-xiong, Li Wei, et al. Design and test of the dynamic variable spraying system of plant protection UAV[J]. Transactions of the Chinese Society of agricultural Machinery, 2017, 48(5): 86-93.
25 张吉利. 农用航空喷雾系统的试验与研究[J]. 农业技术与装备, 2014(5): 56-59.
Zhang Ji-li. Experiment and research on agricultural aerosol spray system[J] Agricultural Technology and Equipment, 2014(5): 56-59.
26 中国民用航空总局运输管理司.中华人民共和国民用航空行业标准:第一部分 农业航空作业质量技术指标:MH/T1002-2016[M]. 北京:中国民用航空局,2016.
27 陈盛德, 兰玉彬, 李继宇, 等. 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017, 33(7): 82-90.
Chen Sheng-de, Lan Yu-bin, Li Ji-yu, et al. Evaluation and test of effective spraying width of aerial spraying on plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 82-90.
[1] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[2] JIA Hong-lei, WANG Wan-peng, CHEN Zhi, ZHUANG Jian, WANG Wen-jun, LIU Hui-li. Real-time pressure measurement of profiling elastic press roller based on soil cone index [J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175.
[3] CHEN Qiang, XU Hong-guo, TAN Li-dong. Surveying method of traffic accident scene based on SUAV photogrammetry [J]. 吉林大学学报(工学版), 2016, 46(5): 1439-1446.
[4] ZHANG Qiang, YU Lu-lu, JIA Hong-lei. Design and experiment of handling mechanism for tractors [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 108-112.
[5] WANG Zeng-hui, HUANG Dong-yan, LI Zhuo-shi, JIA Hong-lei, WAN Bao-cheng. Universal the blade the broken stubble power consumption influence of the working parameters of the rotary tiller broken stubble [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 122-125.
[6] XIONG Hai-liang, SUN De-chun,TIAN Hong-xin,YANG Hong,YI Ke-chu. Uplink data transmission scheme for unmanned aerial vehicle [J]. 吉林大学学报(工学版), 2010, 40(01): 276-0280.
[7] CHEN Mou, XIAO Jian, JIANG Chang-sheng . Three dimensional path planning of UAV with improved ant algorithm [J]. 吉林大学学报(工学版), 2008, 38(04): 991-995.
[8] Liu Hui;Wang Mao-hua;Wang Yue-xuan;Ma Dao-kun;Li Hai-xia. Development of farmland soil moisture and temperature monitoring system based on wireless sensor network [J]. 吉林大学学报(工学版), 2008, 38(03): 604-0608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!