Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1584-1592.doi: 10.13229/j.cnki.jdxbgxb20190272

Previous Articles    

Energy absorption properties of multi-corner thin-walled columns with double surface gradients

Jun-xian ZHOU1(),Rui-xian QIN1,Bing-zhi CHEN2()   

  1. 1. College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116021, China
    2. College of Locomotive and Vehicle Engineering, Dalian Jiaotong University, Dalian 116021, China
  • Received:2019-03-26 Online:2019-09-01 Published:2019-09-11
  • Contact: Bing-zhi CHEN E-mail:zhoujunxian2013@126.com;chenbingzhi06@hotmail.com

Abstract:

Graded thickness and multi-corner designs are two efficient strategies to improve the energy dissipation of thin-walled tubes. In this study, the mechanical properties of multi-corner structures (square and nonconvex multi-corner tubes) with double surface gradients subjected to axial load were theoretically and numerically studied. An analytical formulation for the mean load of these types of novel structures was derived using the super folding element theory. The theoretical predictions agreed well with the simulation results obtained using the ANSYS/LS-DYNA software. The results show that increasing the corner number and thickness gradient can improve the energy-absorption efficiency. The combination of nonconvex multi-corner structures and double-surface gradients can lead to the increase in the specific energy absorption as high as 148% to 205% when compared to a square tube with a uniform thickness. This fully demonstrates the high efficiency of this type of combination in improving the crashworthiness of thin-walled structures.

Key words: thin-walled structure, axial crushing, graded thickness, energy absorption, collapse mode

CLC Number: 

  • O342

Fig.1

Folding mechanisms of basic elements"

Fig.2

Cross-sections"

Fig.3

Cross section of a square tube with a double surface gradient"

Fig.4

Type I folding element"

Fig.5

Load conditions of simulations"

Fig.6

FE model of specimens with triggers"

Fig. 7

Material distributions of two types of specimens"

Fig.8

Tensile stress-strain curve of AA6060 T4"

Fig.9

Deformation patterns of columns"

Fig.10

Crushing force-displacement curves"

Table 1

Analytical and numerical solutions of the crushing responses"

试件 仿真结果 理论值E q(37): δ = 0.70 , ? D a = 1.3 修正后的理论值E q(37): δ = δ n
F ˉ n /kN F m a x /kN CFE/% SEA/(kJ·kg-1) P m /kN Error /% δ n D P m /kN Error/%
SQU(1.2,1.2) 7.81 24.93 31.32 7.53 9.27 18.69 0.75 1.2 8.32 6.53
SQU(1.3,1.1) 8.46 25.10 33.70 8.15 9.72 14.85 0.75 1.2 8.73 3.19
SQU(1.4,1.0) 9.26 25.23 36.70 8.81 10.18 9.93 0.74 1.2 9.04 2.37
SQU(1.5,0.9) 9.92 25.29 39.22 9.43 10.72 8.06 0.74 1.2 9.76 1.61
SQU(1.6,0.8) 10.42 25.41 41.00 9.91 11.16 7.10 0.74 1.2 10.16 2.49
SQU(1.7,0.7) 10.87 25.64 42.39 10.20 11.58 6.53 0.73 1.2 10.68 1.74
SQU(1.8,0.6) 11.37 25.88 43.93 10.81 12.05 5.98 0.74 1.2 10.97 3.51
NCMC12(1.2,1.2) 20.53 33.54 61.21 18.74 20.99 2.24 0.71 1.3 21.58 5.11
NCMC12(1.3,1.1) 21.68 33.77 64.19 19.51 21.69 0.01 0.70 1.3 22.62 4.33
NCMC12(1.4,1.0) 22.90 34.02 67.31 20.61 22.57 1.44 0.70 1.3 23.53 2.75
NCMC12(1.5,0.9) 24.49 33.44 73.23 21.72 23.27 4.98 0.69 1.3 24.61 0.48
NCMC12(1.6,0.8) 25.16 34.71 72.48 22.32 24.14 4.05 0.69 1.3 25.93 3.06
NCMC12(1.7,0.7) 26.35 35.09 75.09 23.04 24.95 5.31 0.68 1.3 26.78 1.63
NCMC12(1.8,0.6) 23.87 35.21 67.79 21.79 25.71 7.70 0.71 1.3 26.43 10.74
1 Lu G X , Yu T . Energy absorption of structures and materials[C]∥Woodhead Publishing Series in Metals and Surface Engineering. Cambridge: CRC Press, 2003: 385-400.
2 Abramowicz W . Thin-walled structures as impact energy absorbers[J]. Thin Wall Struct, 2003, 41(2): 91-107.
3 Abramowicz W , Jones N . Dynamic progressive buckling of circular and square tubes[J]. Int J Impact Eng, 1986, 4(4): 243-270.
4 Langseth M , Hopperstad O S . Static and dynamic axial crushing of square thin-walled aluminium extrusions[J]. Int J Impact Eng, 1996, 18(7/8): 949-968.
5 Langseth M , Hopperstad O S , Hanssen A G . Crash behaviour of thin-walled aluminium members[J]. Thin Wall Struct, 1998, 32(1): 127-150.
6 Abramowicz W , Jones N . Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically[J]. Int J Impact Eng, 1997, 19(5): 415-437.
7 Wierzbicki T , Abramowicz W . On the crushing mechanics of thin-walled structures[J]. J Appl Mech, 1983, 50(4): 727-734.
8 Abramowicz W , Jones N . Dynamic axial crushing of square tubes[J]. Int J Impact Eng, 1984, 2(2): 179-208.
9 Santosa S P , Wierzbicki T , Hanssen A G , et al . Experimental and numerical studies of foam-filled sections[J]. Int J Impact Eng, 2000, 24(5): 509-534.
10 Santosa S , Wierzbicki T . Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Comput Struct, 1998, 68(4): 343-367.
11 Zhang X , Cheng G . A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns[J]. Int J Impact Eng, 2007, 34(11): 1739-1752.
12 Hanssen A G , Langseth M , Hopperstad O S . Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J]. Int J Impact Eng, 2000, 24(4): 347-383.
13 Hanssen A C , Langseth M , Hopperstad O S . Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. Int J Impact Eng, 2000, 24(5): 475-507.
14 Tang Z , Liu S , Zhang Z . Energy absorption properties of non-convex multi-corner thin-walled columns[J]. Thin Wall Struct, 2012, 51: 112-120.
15 Liu S , Tong Z , Tang Z , et al . Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads[J]. Thin Wall Struct, 2015, 88: 70-81.
16 Zhang X , Huh H . Crushing analysis of polygonal columns and angle elements[J]. Int J Impact Eng, 2010, 37(4): 441-451.
17 Yamashita M , Gotoh M , Sawairi Y . Axial crush of hollow cylindrical structures with various polygonal cross-sections: numerical simulation and experiment[J]. J Mater Process Technol, 2003, 140(1-3): 59-64.
18 Godat A , Legeron F , Bazonga D . Stability investigation of local buckling behavior of tubular polygon columns under concentric compression[J]. Thin Wall Struct, 2012, 53: 131-140.
19 Zhang X , Zhang H . Experimental and numerical investigation on crush resistance of polygonal columns and angle elements[J]. Thin Wall Struct, 2012, 57: 25-36.
20 Zhang X , Wen Z , Zhang H . Axial crushing and optimal design of square tubes with graded thickness[J]. Thin Wall Struct, 2014, 84: 263-274.
21 Abramowicz W , Wierzbicki T , Axial crushing of multicorner sheet metal columns [J]. J Appl Mech Trans ASME, 1989, 56(1): 113-120.
22 Ma J , Hou D , Chen Y , et al . Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation[J]. Thin Wall Struct, 2016, 100: 38-47.
[1] ZOU Meng, YU Yong-jun, ZHANG Rong-rong, WEI Can-gang, WANG Hui-xia. Simulation analysis of energy-absorption properties of thin-wall tube based on horn structure [J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[2] YU Xiang-Jun, WANG Guo-Qiang, WANG Ji-Xin, TANG Xiao-Bo, HU Ji. Dynamic response of rollover prevention system for wheel loader [J]. 吉林大学学报(工学版), 2010, 40(05): 1262-1267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!