Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1870-1875.doi: 10.13229/j.cnki.jdxbgxb20190558

Previous Articles    

A new method of troposcatter communication based on frequency hopping and simulation analysis

Bin-song SHEN1(),Jian-cun QIN2(),Wen-cheng REN1   

  1. 1.The 54th Research Institute of CETC, Shijiazhuang 050081, China
    2.CETC Network & Communications Group Co. , Ltd. , Shijiazhuang 050081, China
  • Received:2019-06-03 Online:2020-09-01 Published:2020-09-16
  • Contact: Jian-cun QIN E-mail:93349647@qq.com;13903116377@139.com

Abstract:

In this paper, a novel anti-fading method based on frequency hopping is proposed to solve the problem of multipath fading characteristics of troposcatter communication channels. The troposcatter communication model based on frequency hopping is established and the performance of this method is theoretically analyzed in fading channel. The algorithm flow of its received baseband signal processing is given. The frame coarse synchronization algorithm based on frequency hopping frame structure and the frame fine synchronization algorithm based on channel response search are adopted to solve frame synchronization problem in fading channel. The frequency domain equalization algorithm based on channel de-noising estimation and aliasing extraction is adopted to overcome channel multipath effectively and suppress noise amplification. Simulation results verify the validity and effectiveness of the proposed method.

Key words: troposcatter communication, frequency hopping, anti-fading, frame synchronization, channel equalization

CLC Number: 

  • TN926

Fig.1

Troposcatter communication system model based on frequency hopping"

Table 1

Comparison table of characteristics of different troposcatter communication systems"

分集方式性能设备复杂度算法复杂度缺点
空间最优复杂复杂设备复杂
跳频良好简单简单
频率良好简单复杂峰均比高、有交调
时间良好简单复杂大时延
角分集复杂复杂设备复杂

Fig.2

Frequency hopping troposcatter communication received signal baseband processing flow"

Table 2

Frequency hopping data frame structure"

帧内容长度帧内容长度
GAP36SERV12
RU4DATA816
PILOT32PILOT32
CTRL64RD4

Fig.3

Correlation peak alignment process"

Fig.4

Schematic diagram of time-domain impulse response before and after fine frame synchronization adjustment"

Fig.5

Channel estimation algorithm flow"

Fig.6

Frequency response before and after correction in AWGN channel"

Fig.7

Performance simulation model of anti-fading method"

Fig.8

Constellation of demodulator"

Fig.9

Error performance curve of anti-fading method"

Fig.10

Error performance curve of anti-fading method in different multipath channel"

1 梅立荣, 肖卓, 李阳, 等. Ku频段散射角分集天线技术[J].无线电通信技术, 2018, 44(5): 435-439.
Mei Li-rong, Xiao Zhuo, Li Yang, et al. Ku-band angular diversity antenna for troposcatter communication[J]. Radio Communications Technology, 2018, 44(5): 435-439.
2 李阳, 赵显超, 徐松毅. 一种C频段散射角分集双波束馈源的设计[J]. 无线电工程, 2015, 45(11): 52-55.
Li Yang, Zhao Xian-chao, Xu Song-yi. Design of a C-band Dual-beam feed for angular diversity antenna system[J]. Radio Engineering, 2015, 45(11): 52-55.
3 刘丽哲. 瑞利衰落信道下带内频率分集性能分析[J]. 无线电通信技术, 2012, 38(6): 35-37.
Liu Li-zhe. Performance analysis of in-band frequency diversity based on a rayleigh fading channel[J]. Radio Communications Technology, 2012, 38(6): 35-37.
4 李志勇, 李文铎. 对流层散射通信时间分集技术研究[J].无线电工程, 2013, 43(12): 17-20.
Li Zhi-yong, Li Wen-duo. Study of the mechanism of time diversity for troposcatter communication[J]. Radio Engineering, 2013, 43(12): 17-20.
5 李志勇. 瑞利衰落多重分集后LDPC的性能分析[J]. 无线电通信技术, 2014, 40(5): 34-36.
Li Zhi-yong. Analysis on LDPC performance in rayleigh channel with diversity[J]. Radio Communications Technology, 2014, 40(5): 34-36.
6 许炜阳, 周杰, 王雨晴, 等. 基于信道估计的OFDM定时同步算法[J]. 吉林大学学报: 工学版, 2016, 46(1): 290-295.
Xu Wei-yang, Zhou Jie, Wang Yu-qing, et al. OFDM timing synchronization algorithm based on channel estimation[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(1): 290-295.
7 Jakubisin D, Buehrer R M. On the complexity-performance trade-off in code-aided frame synchronization[C]∥IEEE Signal Processing Advances in Wireless Communications, Toronto, Canada, 2014: 364-368.
8 方朝曦, 王宗欣. 单载波块传输系统中基于叠加导频的信道估计与均衡[J]. 吉林大学学报: 工学版, 2017, 37(1): 192-197.
Fang Zhao-xi, Wang Zong-xin. Superimposed pilot based channel estimation and equalization for single carrier block transmission[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 37(1): 192-197.
9 Zhu Y, Letaief K B. Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications[J]. IEEE Trans on Wireles Commun, 2006, 5(12): 3548-3557.
10 Valcarce R L. Realizable linear and decision feedback equalizers: properties and connections[J]. IEEE Transactions on Signal Processing, 2004, 52(3): 757-773.
11 马思扬, 彭华, 王彬. 适用于稀疏多径信道的稀疏自适应常模盲均衡算法[J]. 通信学报, 2017, 38(1): 149-157.
Ma Si-yang, Peng Hua, Wang Bin. Sparse adaptive constant blind equalization algorithm for sparse multipath channel[J]. Journal on Communications, 2017, 38(1): 149-157.
[1] WANG Xiu-hui, QIU Zhen-yan, LU Hui-juan. Design of multi-PC parallel rendering architecture based on fast ethernet [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 276-279.
[2] Chen Hong-bin,Feng Jiu-chao . Generating method of chaotic frequency hopping codes and its application in communications [J]. 吉林大学学报(工学版), 2008, 38(01): 211-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!