Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1913-1922.doi: 10.13229/j.cnki.jdxbgxb20190609

Previous Articles    

Nonlinear model predictive control for automatic train operation based on multi⁃point model

Chao JIA1(),Hong-ze XU1,Long-sheng WANG2   

  1. 1.School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.Signal & Communication Research Institute,China Academy of Railway Sciences,Beijing 100081,China
  • Received:2019-06-17 Online:2020-09-01 Published:2020-09-16

Abstract:

This paper investigate the design of the controller of Automatic Train Operation (ATO) system under the consideration of multiple optimal objectives and constraints. Based on a nonlinear multi-point model, an ATO Nonlinear Model Predictive Control (NMPC) algorithm is proposed to meet the punctuality of train operation, energy saving and passenger comfort. Moreover, the theoretical analysis of algorithm feasibility and the proof of stability for closed-loop system are presented. The validity of the algorithm is verified by numerical simulation. The simulation results show that the proposed algorithm has better control effect and lower error than the Linear Model Predictive Control (LMPC) algorithm when the train meets the operational constraints.

Key words: traffic information engineering and control, high-speed train, automatic train operation, nonlinear model predictive control, multi-point model

CLC Number: 

  • U284.48

Fig.1

Framework of CRH3 series EMU and forces analysis for one car"

Table 1

Parameters of simulation"

参数数值
c0/(N·t-17.75
cv/[N·h·(km·t)-1]0.062 367
ca/[N·h2·(km2·t)-1]0.001 13
km1/%31.4
km2/%38.5
km3/%30.1
kd/(N·s·m-1)5×106
ks/(N·m-1)1×107
m1/t67.2
m2/t74.6
m3/t73

Fig.2

Train speed trajectory under case1"

Fig.3

Train traction and braking force of each car under case1"

Fig.4

Comparison of traction and braking force of first car in two methods under case1"

Table 2

Speed steady state error of two methods"

方法时间段/s
0~100100~300300~500
方法10.410.780.58
本文方法0.090.260.18

Table 3

Output performance comparison of two methods"

方法仿真时间/sE/105kJmaxfin/kN
方法116.371.0698.13
本文方法21.151.1099.29

Fig.5

Train speed trajectory under three cases"

Fig.6

Train traction and braking force of first car under three cases"

Table 4

Comparison of output performance under three cases"

case仿真时间/sE/105kJmaxfin/kN
121.151.10099.29
216.921.05497.52
320.380.97194.58
1 Dong H, Ning B, Cai B, et al. Automatic train control system development and simulation for high-speed railways[J]. IEEE Circuits and Systems Magazine, 2010, 10(2): 6-18.
2 郭红戈, 谢克明. 动车组列车制动系统的Hammerstein模型及其参数辨识方法[J]. 铁道学报, 2014, 36(4): 48-53.
Guo Hong-ge, Xie Ke-ming. Hammerstein model and parameters identification of EMU braking system[J]. Journal of the China Railway Society, 2014, 36(4): 48-53.
3 唐涛, 黄良骥. 列车自动驾驶系统控制算法综述[J]. 铁道学报, 2003, 25(2): 98-102.
Tang Tao, Huang Liang-ji. A survey of control algorithm for automatic train operation[J]. Journal of the China Railway Society, 2003, 25(2): 98-102.
4 石卫师. 基于无模型自适应控制的城轨列车自动驾驶研究[J]. 铁道学报, 2016, 38(3): 72-77.
Shi Wei-shi. Research on automatic train operation based on model-free adaptive control[J]. Journal of the China Railway Society, 2016, 38(3): 72-77.
5 Oshima H, Yasunobu S, Sekino S I. Automatic train operation system based on predictive fuzzy control[C]∥Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications, Hitachi, Japan, 1988: 485-489.
6 余进, 钱清泉, 何正友. 两级模糊神经网络在高速列车ATO系统中的应用研究[J]. 铁道学报, 2008, 30(5): 52-56.
Yu Jin, Qian Qing-quan, He Zheng-you. Research on application of two-degree fuzzy neural network in ATO of high speed train[J]. Journal of the China Railway Society, 2008, 30(5): 52-56.
7 Sun H Q, Hou Z S, Tang T. An iterative learning approach for train trajectory tracking control[C]∥Proceedings of the International Federation of Automatic Control, Milano, Italy, 2011: 14916-14921.
8 罗恒钰, 徐洪泽. 基于参考模型的ATO自适应控制算法研究[J]. 铁道学报, 2013, 35(7): 68-73.
Luo Heng-yu, Xu Hong-ze. Study on model reference adaptive control of ATO systems[J]. Journal of the China Railway Society, 2013, 35(7): 68-73.
9 冷勇林, 陈德旺, 阴佳腾. 基于专家系统及在线调整的列车智能驾驶算法[J]. 铁道学报, 2014, 36(2): 62-68.
Leng Yong-lin, Chen De-wang, Yin Jia-teng. An intelligent train operation(ITO) algorithm based on expert system and online adjustment[J]. Journal of the China Railway Society, 2014, 36(2): 62-68.
10 王龙生, 徐洪泽, 张梦楠, 等. 基于混合系统模型预测控制的列车自动驾驶策略[J]. 铁道学报, 2015, 37(12): 53-60.
Wang Long-sheng, Xu Hong-ze, Zhang Meng-nan, et al. Hybrid model predictive control application to automatic train operation[J]. Journal of the China Railway Society, 2015, 37(12): 53-60.
11 王义惠, 罗仁士, 于振宇, 等. 考虑列车ATP限速的ATO控制算法研究[J]. 铁道学报, 2012, 34(5): 59-64.
Wang Yi-hui, Luo Ren-shi, Yu Zhen-yu, et al. Study on ATO control algorithm with consideration of ATP speed limits[J]. Journal of the China Railway Society, 2012, 34(5): 59-64.
12 Zhang L J, Zhuan X T. Optimal operation of heavy-haul trains equipped with electronically controlled pneumatic brake systems using model predictive control methodology[J]. IEEE Transactions on Control Systems Technology, 2013, 22(1): 13-22.
13 Zhang L, Zhuan X. Development of an optimal operation approach in the MPC framework for heavy-haul trains[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1391-1400.
14 Zhuan X, Xia X. Speed regulation with measured output feedback in the control of heavy haul trains[J]. Automatica, 2008, 44(1): 242-247.
15 杨辉, 张坤鹏, 王昕, 等. 高速列车多模型广义预测控制方法[J]. 铁道学报, 2011, 33(8): 80-87.
Yang Hui, Zhang Kun-peng, Wang Xin, et al. Generalized multiple-model predictive control method of high-speed train[J]. Journal of the China Railway Society, 2011, 33(8): 80-87.
16 杨罡, 刘光明, 喻乐. 高速列车运行过程的非线性预测控制[J]. 铁道学报, 2013, 35(8): 16-21.
Yang Gang, Liu Guang-ming, Yu Le. Nonlinear predictive control of operation process of high-speed train[J]. Journal of the China Railway Society, 2013, 35(8): 16-21.
17 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23.
Yao Shuan-bao, Guo Di-long, Yang Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23.
18 Yang C D, Sun Y P. Mixed H2/H∞ cruise controller design for high speed train[J]. International Journal of Control, 2001, 74(9): 905-920.
19 Besselmann T, Lofberg J, Morari M. Explicit MPC for LPV systems: stability and optimality[J]. IEEE Transactions on Automatic Control, 2012, 57(9): 2322-2332.
[1] Da-yi QU,Yan-feng JIA,Dong-mei LIU,Jing-ru YANG,Wu-lin WANG. Dynamic partitioning method for road network intersection considering multiple factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1478-1483.
[2] Hua⁃yue WU,Li⁃ren DUAN. Unstructured road detection method based on RGB entropy and improved region growing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 727-735.
[3] TAO Tao, XU Hong-ze. Immersion and invariance fault-tolerant control for a class high-speed trains [J]. 吉林大学学报(工学版), 2015, 45(2): 554-561.
[4] SHI Yi-ran, TIAN Yan-tao, SHI Hong-wei, ZHANG Li. Modified Volterra model based nonlinear model predicting control for air-fuel ratio of SI engines [J]. 吉林大学学报(工学版), 2014, 44(2): 538-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!