Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 323-330.doi: 10.13229/j.cnki.jdxbgxb20190835

Previous Articles    

Night road image enhancement method based on optimized MSR

Fu LIU1,2(),Lu LIU2,Tao HOU2,Yun LIU2()   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2019-08-23 Online:2021-01-01 Published:2021-01-20
  • Contact: Yun LIU E-mail:liufu@jlu.edu.cn;liuyun313@jlu.edu.cn

Abstract:

In order to improve the image quality of night roads, to promote the visibility and contrast of the target in the image, and to reduce the difficulty of target detection in night road image, a night road image enhancement method based on the optimized Multi-scale Retinex (Multi scale retinex,MSR) algorithm is proposed in this paper. First, the Red, Green and Blue (RGB) image is converted to the YUV color space. Secondly, the optimized MSR algorithm is constructed by using the reciprocal of the Just Noticeable Distortion (Just noticeable distortion,JND) as the coefficient before the incident image in the MSR algorithm, which is used to adjust the brightness of the channel Y adaptively. Meanwhile, the channels of U and V are proportionally adjusted to obtain a new image, which is then combined with the original image in a 1∶1 ratio to preserve the image details. Finally, the Contrast-limited Adaptive Histogram Equalization method (CLAHE) is used to improve image contrast. Experiments on datasets containing 770 images of night road show that the proposed method exhibits the ability to adaptive adjustment of night image brightness, alleviate uneven brightness of the image, enhance the sharpness of nighttime images and the detail information of image. By using the support vector machine algorithm to detect vehicles in image, the missed detection rate and false detection rate are decreased by 2.61% and 4.35%, respectively..

Key words: pattern recognition and intelligent system, image processing, night image enhancement, optimizing MSR algorithm, brightness adaptive adjustment

CLC Number: 

  • TP301.6

Fig.1

Retinex schematic"

Fig.2

Flow chart of night road image enhancement"

Fig.3

Night road dataset image"

Fig.4

Road lighting complex environment"

Fig.5

Dark road light"

Fig.6

Uneven light distribution in community"

Fig.7

Residential lighting is darker"

Fig.8

Image evaluation index results comparison"

Table 1

Comparison of classification experiments before and after image enhancement"

增强方法准确率召回率误检率漏检率F1-measure

原始图像

MSRCR

文献[17]

本 文

93.90

93.00

92.61

97.40

93.91

92.17

90.43

96.52

6.09

6.09

5.22

1.74

6.09

7.83

9.57

3.48

93.90

92.58

91.51

96.96

1 朱爱国. 汽车驾驶员夜间安全行车技术分析[J]. 时代汽车, 2018(3): 8-9.
Zhu Ai-guo. Analysis of car driver's night safety driving technique[J]. Auto Time, 2018(3): 8-9.
2 周苏, 钱辰, 肖建华. 基于单目视觉的前方车辆检测方法[C]∥ 第十五届国际汽车交通安全学术会议论文集, 重庆, 2018: 321-327.
Zhou Su, Qian Chen, Xiao Jian-hua. A vehicles detection algorithm based on monocular vision[C]∥Proceeding of the 15th International Forum of Automotive Traffic Safety, Chongqing,2018: 321-327.
3 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报:工学版, 2018, 48(6): 1895-1903.
Xu Yan, Sun Mei-shuang. Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1895-1903.
4 Dong X, Pang Y, Wen J. Fast efficient algorithm for enhancement of low lighting video[C]∥IEEE International Conference on Multimedia and Expo,Barcelona,USA, 2011:1-6.
5 Li J, Li S Z, Pan Q, et al. Illumination and motion-based video enhancement for night surveillance[C]∥IEEE International Workshop on Visual Surveillance & Performance Evaluation of Tracking & Surveillance, Beijing, China, 2005: 169-175.
6 Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression[C]∥ACM on Conference on Computer Graphics & Interactive Techniques, San Antonio, Texas,USA, 2002: 249-256.
7 Land E H. Recent advances in retinex theory and some implications for cortical computations:color vision and the nature image[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(16): 5163-5169.
8 Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
9 Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
10 Lin H, Shi Z. Multi-scale retinex improvement for nighttime image enhancement[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(24): 7143-7148.
11 徐跃书. 不良环境下的视频增强[D]. 北京:北京邮电大学信息与通信工程学院, 2017.
Xu Yue-shu. Video enhancement under bad light[D]. Beijing:School of Information and Communication Engineering,Beijing University of Post and Telecommunications, 2017.
12 Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.
13 Rahman Z U, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement[C]∥International Conference on Image Processing, Lausanne, Switzerland, 1996:1003-1006.
14 乔丽, 刘继华. 基于直方图均衡变换的彩色YUV图像边缘检测方法[J]. 电视技术, 2018, 42(4): 20-25.
Qiao Li, Liu Ji-hua. Color YUV image edge detection method based on histogram equalization transform[J]. Video Engineering, 2018, 42(4): 20-25.
15 Chou C H, Li Y C. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile[J]. IEEE Transactions on Circuits and Systems for Video Technology,1995,5(6):467-476.
16 Zhang X, Lin W, Xue P. Just-noticeable difference estimation with pixels in images[J]. Journal of Visual Communication and Image Representation,2008, 19(1): 30-41.
17 Fu Q, Jung C, Xu K. Retinex-based perceptual contrast enhancement in images using luminance adaptation[J]. IEEE Access, 2018, 6: 61277-61286.
18 Zuiderveld K. Contrast Limited Adaptive Histogram Equalization[M]. New York: Academic Press Professional, Inc., 1994.
19 Jobson D J, Rahman Z U, Woodell G A. The statistics of visual representation[J]. Visual Information Processing, 2002, 4736(2): 25-35.
20 郑肇葆, 郑宏. 基于图像信息熵的图像分类[J]. 测绘地理信息, 2018, 43(5): 1-3.
Zheng Zhao-bao, Zheng Hong. Image classification based on image information entropy[J].Journal of Geomatics, 2018, 43(5): 1-3.
21 肖祥元, 景文博, 赵海丽. 基于峰值信噪比改进的图像增强算法[J]. 长春理工大学学报:自然科学版, 2017, 40(4): 83-86, 92.
Xiao Xiang-yuan, Jing Wen-bo, Zhao Hai-li. An improved image enhancement algorithm based on the peak-signal to noise ratio[J]. Journal of Changchun University of Science and Technology, 2017, 40(4): 83-86, 92.
22 Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05), San Diego, CA, USA, 2005: 886-893.
23 Khammari A, Nashashibi F, Abramson Y, et al. Vehicle detection combining gradient analysis and AdaBoost classification[C]∥Intelligent Transportation Systems, Vienna, Austria, 2005:66-71.
[1] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[2] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[3] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[4] LIANG Shi-li, CHAI Zong-qian, ZHANG Ling, WU Yan-sheng, CAO Chun-lei. Image encryption method based on partial X type cellular automaton [J]. 吉林大学学报(工学版), 2017, 47(5): 1653-1660.
[5] HE Guang, ZHANG Ming, YUAN Shuang-shi. Temperature-related dynamic characteristics of MEMS setback arming device [J]. 吉林大学学报(工学版), 2017, 47(1): 145-150.
[6] LI Jian, LI He-yu, YAO Ru-jing, WU Lin. Check of MR image edge information of lumber intervertebral disc using an improved Canny algorithm [J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709.
[7] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[8] HAN Cheng, ZHANG Chao, QIN Gui-he, XUE Yao-hong, YANG Fan, FAN Jing-tao, LIU Wen-jing. An algorithm of optical radiometric compensation for projective system of large-scale orthogonal multi-screens [J]. 吉林大学学报(工学版), 2015, 45(4): 1266-1273.
[9] CHEN Yong-heng,WEI Ming-li,QU Zhao-wei,ZHANG Hu,CAO Ning-bo. Pedestrian crossing characteristics under influence of left-turn vehicle [J]. 吉林大学学报(工学版), 2015, 45(1): 62-67.
[10] ZHANG Jin-guo,GUO Hai-tao,WU Jun-peng,LI Yi-tong. Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target [J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[11] HUANG De-tian, LIU Xue-chao, WU Zhi-yong, LIANG Min-hua. Design of high-speed image acquisition and processing system based on cameraLink [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 309-312.
[12] FENG Xin, WANG Xiao-ming, DANG Jian-wu, SHEN Yu. Image fusion method based on interpolation Directionlet [J]. 吉林大学学报(工学版), 2013, 43(04): 1127-1132.
[13] JIN Li-sheng, XIAN Hua-cai, ZU Li, SUN Yu-qin, HOU Hai-jing, NIU Qing-ning. License plate recognition algorithm for passenger cars in Chinese residential areas [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 166-169.
[14] DUAN Yue-hua, ZHANG Xiao-ning. 3-dimensional virtual sieve analysis of coarse aggregate of concrete based on CT scan image [J]. , 2012, 42(04): 918-923.
[15] WANG Fang-rong, LIN Xiao-long, WANG Xiao-peng, ZHANG Jia-quan, ZHANG Tie-qiang, FENG Yi. Viscose filament real time detection system design and image processing algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 288-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!