Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 63-71.doi: 10.13229/j.cnki.jdxbgxb20190912

Previous Articles     Next Articles

Development of vehicle controller for multi-wheel hybrid-driven unmanned frame vehicle

Xiao-hua ZENG1(),Xiao-jian LI1,Shao-feng DU2(),Tao MA2,Zhen-wei WANG1,Da-feng SONG1   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System,Inner Mongolia First Machinery Group Corporation,Baotou 014030,China
  • Received:2019-09-23 Online:2021-01-01 Published:2021-01-20
  • Contact: Shao-feng DU E-mail:zeng.xiaohua@126.com;dushaofeng8611@126.com

Abstract:

According to the functional characteristics of Multi-wheel distributed hybrid-driven unmanned frame vehicle (MHUFV), the vehicle control system is developed. This system includes high-voltage power-on and power-off management based on the coordination of two power sources, fault diagnosis and fault-tolerant control of complex systems with multiple control nodes, and the algorithm design like driver input command determination with dual input mode, anti-skid control, mode switching and energy distribution control. On this basis, the MHUFV software architecture is constructed, and the vehicle controller is developed by using the Rapid Control Prototype (RCP) technology platform. The basic performance of the vehicle is studied by real road test. The results show that the developed vehicle controller can meet the design requirements of the real vehicle, the test results of each key state quantity are reasonable when the full load limit speed is 15 km/h, and the fuel saving effect is 38% compared with the traditional diesel vehicle under the same operating condition, which can meet the development requirements of the current frame car industry.

Key words: vehicle controller, multi-wheel distributed, driverless, frame transport vehicle

CLC Number: 

  • U469.79

Fig.1

Power system configuration of MHUFV"

Fig.2

High voltage electrical and electronic architecture of MHUFV"

Fig.3

High voltage power-on flow chart of MHUFV"

Fig.4

“Signal-component” fault level map"

Fig.5

“Component-System” fault level map"

Table 1

System fault tolerance processing"

系统故障

等级

故障等级

描述

容错控制概述
0系统正常/
1报警故障报警并记录,车辆维持运行,本次任务结束后,通知维修,重新启动检查。
2降功率车辆限功率运行,减速停车,卸载框架,然后降功率行驶至维修地点,停车检查。
3停车停车故障,高压电可维持;清空走行电机转矩,保持液压电机运行,使车辆具备转向和制动能力。
4停车停车故障,高压电不可维持,此时液压电机无法保持运行,车辆紧急停止,所有电机动力清除。

Fig.6

Driver operating mode decision"

Table 2

Seven typical pavement related parameters"

路面C1C2C3Soptμmax
干沥青1.28123.9930.5200.1701.171
干水泥1.19625.1660.5390.1601.092
湿沥青大1.02729.4940.4420.1430.950
湿沥青中0.85633.8210.3450.1310.800
湿沥青小0.62833.7650.2000.1100.600
积雪0.19594.1290.0650.0650.190
冰路0.050306.3900.0010.0300.050

Fig.7

Mode switching situation of MHUFV"

Table 3

Energy distribution in typical mode"

工作模式发动机输出功率驱动电机输出转矩
停车发电Pe=Pchg0
纯电动0TMot=Tcmd/8
发动机启动0TMot=Tcmd/8
发动机工作Pe=Pcmd+PchgTMot=Tcmd/8
跛行Pe=Pcmd·ndown+PchgTMot=Tcmd/(8-nerr)
紧急制动00

Fig.8

Vehicle control strategy architecture of MHUFV"

Fig.9

Vehicle controller physical map"

Fig.10

MeCa calibration and measurement interface diagram"

Fig.11

MHUFV real picture"

Fig.12

Drill frame test curve"

Fig.13

Speed curve under dynamic test"

Fig.14

Accelerator pedal and motor torque curve under dynamic test"

Fig.15

Battery parameter change curve under vehicle dynamic test"

Fig.16

Generator demand power and actual power curve under dynamic test"

Table 4

Energy consumption analysis statistics of MHUFV"

参 数数 值
仿真初始(终止)SOC/%0.772(0.772)
百公里综合油耗/[(L·(100 km)-1]168
发动机效率/%40.3
驱动电机平均效率/%52
液压电机平均效率/%65
1 刘银. 纯电动物流车整车控制器的研究与开发[D].济南: 山东大学能源与动力工程学院, 2018.
Liu Yin. Research and development of vehicle controller for pure electric logistics vehicles[D]. Jinan: School of Energy and Power Engineering, Shandong University, 2018.
2 Zhu Zhong-wen, Wang Xu, Huang Wei, et al. The development of an advanced vehicle control platform for pure electric vehicles[C]∥SAE Paper, 2015-01-0229.
3 Wang H, Yuwen Z, Fang Y, et al. Development of pure electric vehicle powertrain controller based on hardware in the loop platform[C]∥The 6th IEEE International Conference on Software Engineering and Service Science(ICSESS), Beijing, China, 2015: 522-526.
4 蔡潇扬, 鲍宁, 袁所贤. 基于Simulink的电动客车整车控制器软件层设计[J]. 重庆理工大学学报:自然科学, 2018, 32(6): 14-20.
Cai Xiao-yang, Bao Ning, Yuan Sou-xian. Design of software layer of the vehicle controller in the passenger car based on simulink[J]. Journal of Chongqing University of Technology(Natural Science), 2018, 32(6): 14-20.
5 吕建龙, 张兴起, 程济秋, 等. 某新能源物流车整车控制策略[J].汽车工程师, 2019(7): 15-18.
Jian-long Lü, Zhang Xing-qi, Cheng Ji-qiu, et al. The vehicle control strategy of a new energy logistics vehicle[J]. Automotive Engineer, 2019(7): 15-18.
6 郑潮雄. 低速纯电动汽车整车控制器的研究与开发 [D]. 长沙: 湖南大学机械与运载工程学院, 2016.
Zheng Chao-xiong. Research and development of vehicle controller for low-speed pure electric vehicles [D]. Changsha: College of Mechanical and Transportation Engineering, Hunan University, 2016.
7 武启平, 金亚萍, 任平, 等. 自动导引车(AGV)关键技术现状及其发展趋势[J]. 制造业自动化, 2013, 35(10): 106-109, 121.
Wu Qi-ping, Jin Ya-ping, Ren Ping, et al. Present situation and developing trend of AGV key technology[J]. Manufacturing Automation, 2013, 35(10): 106-109, 121.
8 吕川. 基于PLC的全向移动机器人控制系统设计 [D]. 合肥: 合肥工业大学机械工程学院, 2015.
Chuan Lyu. Design of omnidirectional mobile robot control system based on PLC[D]. Hefei: College of Mechanical Engineering, Hefei University of Technology, 2015.
9 郭文涛. 轮毂电机电动汽车驱动防滑控制研究[D]. 锦州: 辽宁工业大学汽车与交通工程学院, 2016.
Guo Wen-tao. Research on anti-skid control of wheel motor electric vehicle[D]. Jinzhou: School of Automobile and Traffic Engineering, Liaoning University of Technology, 2016.
10 胡斐,赵治国,孙泽昌. 混合动力城市客车整车控制系统的开发[J]. 汽车工程, 2012, 36(4): 283-287.
Hu Fei, Zhao Zhi-guo, Sun Ze-chang. Development of vehicle control system for hybrid city bus[J]. Automotive Engineering, 2012, 36(4): 283-287.
11 席利贺. 增程式电动汽车能量管理策略优化及增程器控制系统研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2018.
Xi Li-he. Optimization of energy management strategy and research on control system of extender for EVs[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2018.
12 朱敏晔, 赵治国, 萧蕴诗. 基于MPC555的HEV控制系统开发[J]. 华东交通大学学报, 2007, 24(4): 101-103.
Zhu Min-ye, Zhao Zhi-guo, Xiao Yun-shi. The application of RTW in the development of HEV control system based on MPC555[J]. Journal of East China Jiaotong University, 2007, 24(4): 101-103.
13 刘永恒. 纯电动客车整车控制器硬件在环仿真测试及标定系统开发[D]. 长春: 吉林大学仪器科学与电气工程学院, 2014.
Liu Yong-heng. Development of hardware in the loop simulation test and calibration system for complete vehicle controller of pure electric bus[D]. Changchun: College of Instrument Science and Electrical Engineering, Jilin University, 2014.
[1] Shun YANG,Yuan⁃de JIANG,Jian WU,Hai⁃zhen LIU. Autonomous driving policy learning based on deep reinforcement learning and multi⁃type sensor data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!