Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 831-839.doi: 10.13229/j.cnki.jdxbgxb20200040

Previous Articles     Next Articles

Cavitation mechanism of double⁃acting vane pump based on computational fluid dynamics simulation method

Bin ZHANG(),Guo-zan CHENG,Hao-cen HONG(),Chun-Xiao ZHAO,Hua-yong YANG   

  1. State Key Laboratory of Fluid Power & Mechatronic Systems,Zhejiang University,Hangzhou 310027,China
  • Received:2020-01-14 Online:2021-05-01 Published:2021-05-07
  • Contact: Hao-cen HONG E-mail:zbzju@zju.edu.cn;honghaocen@163.com

Abstract:

Under high-pressure and high-speed working condition, double-acting vane pumps are prone to cavitation near damping grooves of the high-pressure oil outlet. In severe cases, cavitation could destroy surface of the valve plate, bring sharp noise and decreasing the service life. In order to figure out the cavitation mechanism, the Computational Fluid Dynamics (CFD) simulation method was used to model and analyze the internal flow field in a double-acting vane pump. The dynamic grid technique was applied to define the boundary motion of the rotor and rollers through the user-defined function (UDF). The fluid dynamic characteristics of velocity field and pressure field were calculated and analyzed under different rotational speed and system pressure. Furthermore, the occurrence of the cavitation was analyzed. Because of the existence of a local low-pressure flow field inside the oil gap between the rotor and valve plate, the cavitation occurred in front of the triangular damping groove of the high-pressure outlet cavity. Comparing the simulation results with the experiment ones, it shows good accuracy and reliability.

Key words: computational fluid dynamics, double-acting vane pump, dynamic grid technology, cavitation, user-defined function

CLC Number: 

  • TQ021.1

Fig.1

Structure diagram of vane pump"

Fig.2

Mesh model in Fluent"

Fig.3

Percentage of gas phase underdifferent cell number"

Fig.4

Periodic characteristics of leaf blade"

Table 1

Boundary condition of the simulation"

边界边界条件设置参数
接触面Interface

接触油膜→静流场

转子流场→接触油膜

静流场→转子流场

入口pressure inlet/MPa0.5
出口pressure outlet/MPa6/8/12

Fig.5

Pressure distribution of vane pump flow field"

Fig.6

Pressure distribution of oil gap underdifferent output pressure"

Fig.7

Velocity distribution of oil gap underdifferent output pressure"

Table 2

Percentage of gas phase underdifferent pressure conditions"

出口压力/MPa气相百分比/%
699.98
899.97
1299.96

Fig.8

Cavitation phenomena on oil gapunder different output pressure"

Fig.9

Velocity distribution of oil gap whenoutlet pressure is 8 MPa"

Fig.10

Schematic diagram of location test of cavitation failure point of vane pump flow plate"

Fig.11

Test bench of vane pump"

Fig.12

Output flow of pump test and simulation at same pressure"

1 朱诗顺,欧阳熙,朱道伟,等. 车辆液压助力转向泵故障模拟实验[J]. 军事交通学院学报,2015,17(3):57-61.
Zhu Shi-shun, Ouyang Xi, Zhu Dao-wei, et al. Fault simulation experiment of automotive hydraulic power steering pump[J]. Journal of Military Transportation University, 2015, 17(3): 57-61.
2 刘阳阳. 双作用高压叶片泵内部泄漏分析及流量脉动研究[D]. 兰州:兰州理工大学能源与动力工程学院, 2019.
Liu Yang-yang. Internal leakage analysis and flow pulsation study on double-action high pressure vane pump[D]. Lanzhou: School of Energy and Power Engineering, Lanzhou University of Technology, 2019.
3 江帆,陈维平,王一军,等. 基于动网格的离心泵内部流场数值模拟[J]. 流体机械, 2007, 35(7):20-24.
Jiang Fan, Chen Wei-ping, Wang Yi-jun, et al. Numerical simulation of flow field inside of centrifugal pump based on dynamics mesh[J]. Fluid Machinery, 2007, 35(7):20-24.
4 王兴坤. 叶片泵流场的数值模拟及性能分析[D]. 洛阳:河南科技大学机电工程学院, 2013.
Wang Xing-kun. Numerical simulation and characteristic research on the flow field for vane pump[D]. Luoyang: School of Mechatronics Engineering, Henan University of Science and Technology, 2013.
5 闻德生,王京,高俊峰,等. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报:工学版,2017,47(4):1094-1101.
Wen De-sheng, Wang Jing, Gao Jun-feng, et al. Pressure variation characteristics in cavity of double-stator single-action vane pump[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1094-1101.
6 曹建国,于亮,杨光辉. 基于CAD和CFD技术的高效叶片泵流场仿真与优化分析[J]. 徐州工程学院学报:自然科学版, 2015, 30(2):1-5.
Cao Jian-guo, Yu Liang, Yang Guang-hui. Simulation and optimization analys of flow field for efficient centrifugal pumps based on the CAD on the CAD and CFD technologies[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2015, 30(2):1-5.
7 Sanada K, Yamaguchi N. CFD analysis of inlet flow around an impeller of an oil-hydraulic pump[C]∥Proceedings of the 8th JFPS International Symposium of Fluid Power, Okinawa, 2011:188-195.
8 孙正,黄钰期,俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报:工学版,2018,48(3):744-751.
Sun Zheng, Huang Yu-qi, Yu Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication[J]. Journal of Jilin University (Engineering and Technology Edition),2018,48(3):744-751.
9 Chao Qun, Zhang Jun-hui, Xu Bin, et al. Effects of inclined cylinder ports on gaseous cavitation of high-speed electro-hydrostatic actuator pumps: a numerical study[J]. Engineering Applications of Computational Fluid Mechanics, 2019,13(1):245-253.
10 Chen Q, Wu M, Kang S, et al. Study on cavitation phenomenon of twin-tube hydraulic shock absorber based on CFD[J]. Engineering Applications of Computational Fluid Mechanics,2019,13(1):1049-1062.
11 Xie S F, Wang Y, Liu Z C, et al. Optimization of centrifugal pump cavitation performance based on CFD[J]. Materials Science and Engineering, 2015, 72(3):1-6.
12 Zhang Q F, Xu X Y. Numerical simulation on cavitation in a vane pump with moving mesh[C]∥International Conference on Computational Methods, Cambridge, England, 2014:1-7.
13 曹国强,包明宇,荣刚. 计算流体动力学(CFD)中并行分区算法的应用[J]. 机械设计与制造,2005(12):70-72.
Cao Guo-qiang, Bao Ming-yu, Rong Gang. The application of parallel district method in computation fluid dynamics[J]. Machinery Design & Manufacture,2005(12):70-72.
14 张凯,王瑞金,王刚. Fluent技术基础与应用实例[M]. 北京:清华大学出版社, 2010.
15 王福军. 计算流体力学分析——CFD软件专著与应用[M].北京:清华大学出版社,2004.
16 刘春宝,马文星,许睿. 液力变矩器轴向力的CFD计算与分析[J]. 吉林大学学报:工学版,2009,39(5):1181-1185.
Liu Chun-bao, Ma Wen-xing, Xu Rui. Calculation and analysis of axial force in hydrodynamic torque converter based on CFD[J]. Journal of Jilin University (Engineering and Technology Edition), 2009,39(5):1181-1185.
[1] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[2] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[3] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[4] LIU Shun-an, HE Xing-zhu, CHEN Yan-li,YANG Lu-hong,LI Wan-lin. Aerodynamic characteristics of a ducted tail rotor with asymmetric layout [J]. 吉林大学学报(工学版), 2014, 44(5): 1353-1359.
[5] MA Wen-xing, SONG Jian-jun, LIU Chun-bao, HU Jing, CHU Ya-xu. Calculation method of outlet pressure of open-type hydrodynamic retarder [J]. 吉林大学学报(工学版), 2014, 44(01): 86-90.
[6] YUAN Zhe, MA Wen-xing, LI Hua-long, HU Jing, ZHOU Qian-qian. Match of heat exchanger and simulation analysis based on hydrodynamic retarder of heavy vehicle [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 526-529.
[7] YUAN Zhe, MA Wen-xing, LU Xiu-quan, HU Jing, YANG Shan-shan. Dynamic braking performance prediction and analysis of hydrodynamic retarder [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 160-164.
[8] XIE Fang-xi, YU Ze-yang, LIU Si-nan, CAO Xiao-feng, JIA Gui-qi, HONG Wei. Effects of injection pressure on fuel spray and air-fuel mixing process of diesel engine [J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[9] ZHANG Ying-chao, WEI Gan, ZHANG Zhe. Aerodynamic numerical simulation of hatch-back car |with different spoilers [J]. 吉林大学学报(工学版), 2011, 41(01): 1-0005.
[10] ZHANG Ying-Chao, ZHANG Zhe, LI Jie. Virtual wind tunnel test based computational fluid dynamics [J]. 吉林大学学报(工学版), 2010, 40(增刊): 90-0094.
[11] ZHANG Ying-chao,LI Jie,ZHANGZhe,HU Xing-jun. Effect of wind tunnel test section geometry on test result [J]. 吉林大学学报(工学版), 2010, 40(02): 346-0350.
[12] ZHANG Ying-chao|ZHANG Zhe|LI Jie|WEI Gan|LUO Shuang-hu. Car styling based aerodynamic numerical simulations [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 260-0263.
[13] LIU Chun-Bao, MA Wen-Xing, XU Rui. Calculation and analysis of axial force in hydrodynamic torque converter based on CFD [J]. 吉林大学学报(工学版), 2009, 39(05): 1181-1185.
[14] ZHANG Jun-yuan, MA Xun, LAN Hai-tao, LI Hong-jian, TANG Hong-bin . Simulation technology of vehicle forntal airbag inflating [J]. 吉林大学学报(工学版), 2008, 38(06): 1262-1266.
[15] LIU Chun-bao,MA Wen-xing,CHU Ya-xu . Application coupling algorithm for multiflowregion in hydrodynamic components [J]. 吉林大学学报(工学版), 2008, 38(06): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!