Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 1106-1110.doi: 10.13229/j.cnki.jdxbgxb20200146

Previous Articles    

Constant flow prediction method of variable speed hydraulic power source based on deep learning and limitation fuzzy

Zhen SONG(),Jun-liang LI,Gui-qiang LIU   

  1. School of Mechanical Engineering,Southwest Petroleum University,Chengdu 610500,China
  • Received:2020-03-10 Online:2021-05-01 Published:2021-05-07

Abstract:

When the conventional method is used to predict the constant flow rate of the variable speed hydraulic power source, the time used to predict the flow rate is long, the error between the predicted result and the real rate is large, and the prediction accuracy is poor. To overcome the above drawbacks, based on the deep learning and limited amplitude fuzzy, a constant flow prediction method of variable speed hydraulic power source is proposed. Using the mathematical models of permanent magnet synchronous motor, servo controller, gear pump and proportional relief valve, with the principle of deep learning, the constant flow of variable speed hydraulic power source is predicted by the limited amplitude fuzzy control technique. The experimental results show that the proposed method has higher prediction efficiency and accuracy.

Key words: deep learning, limited amplitude fuzzy, variable speed hydraulic, flow forecast

CLC Number: 

  • TP273

Fig.1

Variable speed hydraulic power source constant flow limiting control principle"

Fig.2

Forecast time of different methods"

Fig.3

Forecast accuracy of different methods"

1 涂永航, 谷立臣, 马玉. 变转速液压动力源恒流量模糊控制方法研究[J]. 机械设计与研究, 2015, 31(1):102-105, 110.
Tu Yong-hang, Gu Li-chen, Ma Yu. Research on fuzzy control method of variable speed hydraulic power source with constant flow[J]. Machinery Design and Research, 2015, 31(1):102-105, 110.
2 涂永航. 变转速液压动力源恒流量模糊控制方法研究[D]. 西安: 长安大学工程机械学院, 2015.
Tu Yong-hang. Research on the fuzzy control method of variable speed hydraulic power source with constant flow[D]. Xi'an: School of Engineering Machinery, Chang'an University, 2015.
3 郭磊磊, 张兴, 杨淑英, 等. 一种改进的永磁同步发电机模型预测直接转矩控制方法[J]. 中国电机工程学报, 2016, 36(18):5053-5061.
Guo Lei-lei, Zhang Xing, Yang Shu-ying, et al. An improved model predictive direct torque control method for permanent magnet synchronous generators[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36(18):5053-5061.
4 田建勇, 石林江. 基于Kalman算法的光纤网络流量在线预测模型[J]. 激光杂志, 2018, 39(9):110-114.
Tian Jian-yong, Shi Lin-jiang. On-line prediction model of optical fiber network traffic based on Kalman algorithm[J]. Laser Journal, 2018, 39(9):110-114.
5 张军, 迪茹侠, 顾海荣, 等. 基于流量控制的负载敏感液压系统防冲击试验[J]. 广西大学学报:自然科学版, 2017, 42(6):1993-2000.
Zhang Jun, Di Ru-xia, Gu Hai-rong, et al. Anti-shock test of load-sensing hydraulic system based on flow control[J]. Journal of Guangxi University(Natural Science Edition), 2017, 42(6):1993-2000.
6 黄伟男, 权龙, 黄家海, 等. 进出口独立控制液压挖掘机回转系统运行特性[J]. 机械工程学报, 2016, 52(20):159-167.
Huang Wei-nan, Quan Long, Huang Jia-hai, et al. Operation characteristics of the slewing system of an independent import and export control hydraulic excavator[J]. Chinese Journal of Mechanical Engineering, 2016, 52(20):159-167.
7 杨斌. 液压系统中的压力冲击研究[J].航空科学技术,2016,27(10):55-59.
Yang Bin. Study on pressure shock in hydraulic system[J]. Aviation Science and Technology,2016,27(10):55-59.
8 王平. 基于零相位滤波器的变转速液压系统控制性能实验研究[D]. 西安:长安大学工程机械学院, 2018.
Wang Ping. Experimental research on control performance of variable speed hydraulic system based on zero-phase filter[D]. Xi'an:School of Engineering and Machinery, Chang'an University, 2018.
9 马玉, 谷立臣. 变转速液压动力源的输入前馈-反馈复合补偿控制[J]. 长安大学学报:自然科学版, 2017, 37(5):120-126.
Ma Yu, Gu Li-chen. Input feedforward-feedback compound compensation control of variable speed hydraulic power source[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(5):120-126.
10 祝新军, 李明, 李杨. 基于AMESim的先导式精密减压阀的建模与仿真研究[J]. 制造业自动化, 2018, 40(5):82-84, 122.
Zhu Xin-jun, Li Ming, Li Yang. Modeling and simulation of pilot-operated precision pressure reducing valve based on AMESim[J]. Manufacturing Automation, 2018, 40(5):82-84, 122.
11 祁泽林. 模糊及PID控制在变转速液压动力源流量控制中的应用研究[D]. 西安:西安建筑科技大学机电工程学院, 2019.
Qi Ze-lin. Application research of fuzzy and PID control in variable speed hydraulic power source flow control[D]. Xi'an: School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, 2019.
12 马玉, 谷立臣. 伺服电机驱动的液压动力系统及其神经网络自适应优化控制[J]. 中国机械工程, 2014, 25(9):1239-1243.
Ma Yu, Gu Li-chen. The hydraulic power system driven by servo motor and its neural network adaptive optimization control[J]. China Mechanical Engineering, 2014, 25(9):1239-1243.
[1] Jin-qing LI,Jian ZHOU,Xiao-qiang DI. Learning optical image encryption scheme based on CycleGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1060-1066.
[2] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[3] Hong-wei ZHAO,Xiao-han LIU,Yuan ZHANG,Li-li FAN,Man-li LONG,Xue-bai ZANG. Clothing classification algorithm based on landmark attention and channel attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1765-1770.
[4] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[5] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[6] LI Di-fei, TIAN Di, HU Xiong-wei. A method of deep learning based on distributed memory computing [J]. 吉林大学学报(工学版), 2015, 45(3): 921-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!