Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 965-976.doi: 10.13229/j.cnki.jdxbgxb20200205

Previous Articles     Next Articles

Fast imaging for concrete quality defect detection using acoustic tomography

Jing-he LI1(),Shu-jun MENG2   

  1. 1.College of Earth Sciences,Guilin University of Technology,Guilin 541004,China
    2.Control Science and Engineering,Shandong University,Ji'nan 250061,China
  • Received:2020-04-03 Online:2021-05-01 Published:2021-05-07

Abstract:

In order to meet the requirement of efficient and quantitative concrete quality defect detection, a fast imaging algorithm based on the integral equation method with Biconjugate Gradient Stabilized-Fast Fourier Transform (BCGS-FFT) and the Multiple-source and Multiple-frequency Contrast Source Inversion (MMCSI) is proposed. Firstly, the FFT is introduced into the forward process to accelerate the calculation efficiency of the integral equation green's function, and the BCGS is used to improve the stability of iterative solution in the large matrix equations. Secondly, the CSI algorithm without calculating Jacobian matrix is introduced in the inversion process, which can be applied to the data volume of special observation system. The FFT is applied to speed up the matrix multiplication calculation involved in the iterative process of inversion. Finally, numerical simulation and practical examples show that the algorithm can obtain better reconstruction results and improve the efficiency of location in concrete quality defects detection. Furthermore, the results verify the feasibility and effectiveness of the algorithm, which lays a theoretical foundation for the application of acoustic detection to quickly extract the properties of concrete quality defects.

Key words: exploration technology and engineering, concrete quality defect, acoustic tomography, integral equation, contrast source inversion, fast imaging

CLC Number: 

  • P163

Fig.1

Model of concrete quality defects with different properties & ultrasonic measured system"

Fig.2

Flow chart of MMCSI algorithm"

Fig.3

Schematic diagram of observation system"

Fig.4

Inversion results of simple defect with measuring on two-side observation system"

Fig.5

Inversion fitting error curves of simple defect with measuring on two-side observation system"

Fig.6

Inversion results of simple defect model withomnidirectional observation system"

Fig.7

Efficiency trends of inversion calculationwith different observation systems"

Fig.8

Inversion results of complex model"

Fig.9

Inversion fitting error curves ofcomplex defect model"

Fig.10

Inversion results of simple defectmodel with noise"

Fig.11

Inversion fitting error curves ofsimple defect model with noise"

Fig.12

Inversion results of complexdefect model with noise"

Fig.13

Inversion fitting error curves of complexdefect model with noise"

Fig.14

Schematic diagram of example of an actual concrete member model"

Fig.15

Inversion results of actual concretemember with noise"

Fig.16

Inversion fitting error curves of actualconcrete member with noise"

1 王新泉, 崔允亮, 张世民, 等. 长江漫滩高承压水地基地连墙承载特性现场试验研究[J]. 岩石力学与工程学报, 2017, 36(3):773-780.
Wang Xin-quan, Cui Yun-liang, Zhang Shi-min, et al. Field test on bearing characteristics of diaphragm walls under high water pressure at floodplain of Yangtze River[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3):773-780.
2 陈龙珠, 沙玲, 邓俊杰. 混凝土波速受检测方法影响的研究[J]. 岩土工程学报, 2006, 28(6):685-688.
Chen Long-zhu, Sha Ling, Deng Jun-jie. Studies on wave velocities in concrete measured with different test methods[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6):685-688.
3 吴九江, 程谦恭, 文华, 等. 格栅式地下连续墙竖向载荷模型试验研究[J]. 岩石力学与工程学报, 2015, 34(12): 2580-2592.
Wu Jiu-jiang, Cheng Qian-gong, Wen Hua, et al. Model study of the vertical bearing behaviours of lattice shaped diaphragm walls as bridge foundations in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2580-2592.
4 丁亮, 韩波, 刘润泽, 等. 基于探地雷达的混凝土无损检测反演成像方法[J]. 地球物理学报, 2012, 55(1):317-326.
Ding Liang, Han Bo, Liu Run-ze, et al. Inversion imaging method for concrete non-destructive testing based on GPR[J]. Chinese Journal of Geophysics, 2012, 55(1):317-326.
5 魏超, 肖国强, 王法刚. 地质雷达在混凝土质量检测中的应用研究[J]. 工程地球物理学报, 2004, 1(5):447-451.
Wei Chao, Xiao Guo-qiang, Wang Fa-gang. The application of georadar in concrete quality detection[J]. Chinese Journal of Engineering Geophysics, 2004, 1(5):447-451.
6 孟淑君, 杨俊, 李静和, 等. 基桩及地连墙质量缺陷地球物理探测现状及展望[J]. 工程地球物理学报, 2018, 15(3):321-329.
Meng Shu-jun, Yang Jun, Li Jing-he, et al. Status and prospect of geophysical exploration on quality defects of piles and diaphragm wall[J]. Chinese Journal of Engineering Geophysics, 2018, 15(3):321-329.
7 张吉, 师学明, 陈晓玲, 等. 超声波CT技术在混凝土无损检测中的应用现状及发展趋势[J]. 工程地球物理学报, 2008, 5(5):596-601.
Zhang Ji, Shi Xue-ming, Chen Xiao-ling, et al. Development of ultra-sonic wave computer tomography technology and its application to non-destructive detection of concrete[J]. Chinese Journal of Engineering Geophysics, 2008, 5(5):596-601.
8 张霖斌, 刘迎曦, 赵振峰, 等. 有限差分法射线追踪[J]. 石油地球物理勘探, 1993, 28(6):673-677, 684.
Zhang Lin-bin, Liu Ying-xi, Zhao Zhen-feng, et al. Finite-difference ray tracing[J]. Oil Geophysical Prospecting, 1993, 28(6):673-677, 684.
9 Sava P, Fomel S. Huygens wavefront tracing: a robust alternative to conventional ray tracing[J]. Seg Technical Program Expanded Abstracts, 1998, 17(1):No.9.
10 刘洪, 孟凡林, 李幼铭. 计算最小走时和射线路径的界面网全局方法[J]. 地球物理学报, 1995, 38(6):823-832.
Liu Hong, Meng Fan-lin, Li You-ming. The interface grid method for seeking global minimum travel and the correspondent raypath[J]. Chinese Journal of Geophysics, 1995, 38(6):823-832.
11 Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime interpolation[J]. Geophysical Prospecting, 1993, 41(1):99-111.
12 赵改善, 郝守玲, 杨尔皓, 等. 基于旅行时线性插值的地震射线追踪算法[J]. 石油物探, 1998, 37(2):14-24.
Zhao Gai-shan, Hao Shou-ling, Yang Er-hao, et al. Seismic ray algorithm based on the linear traveltime interpolation[J]. Geophysical Prospecting Petroleum, 1998, 37(2):14-24.
13 Moser T J. Shortest path calculation of seismic rays[J]. Geophysics, 1991, 56(1):59-67.
14 周黎明, 王法刚, 肖国强. 超声波层析成像技术在三峡工程混凝土质量检测中的应用[J]. 无损检测, 2004, 26(10):517-519.
Zhou Li-ming, Wang Fa-gang, Xiao Guo-qiang. The application of ultrasonic computed tomography to test the concrete quality of TGP[J]. Nondestructive Testing, 2004, 26(10):517-519.
15 王峰. 超声CT成像正演和反演算法研究[D]. 厦门:厦门大学电子科学与技术学院, 2014.
Wang Feng. Research on the forward and inverse methods in ultrasound CT system[D]. Xiamen:School of Electronic Science and Engineering, Xiamen University, 2014.
16 杨文采, 杜剑渊. 层析成像新算法及其在工程检测上的应用[J]. 地球物理学报, 1994, 37(2): 239-244.
Yang Wen-cai, Du Jian-yuan. A new algorithm of seismic tomography with application to engineering detections[J]. Chinese Journal of Geophysics, 1994, 37(2):239-244.
17 黄靓. 混凝土超声波层析成像的理论方法和试验研究[D]. 长沙:湖南大学土木工程学院, 2008.
Huang Liang. Methodology and experiment research on concrete ultrasonic computerized tomography[D]. Changsha:College of Civil Engineering, Hunan University, 2008.
18 许令周. 一种CG加权新算法[J]. 青岛大学学报:自然科学版, 2015(1):27-30.
Xu Ling-zhou. A new weighting algorithm for CG[J]. Journal of Qingdao University (Natural Science Edition), 2015(1):27-30.
19 刘建军, 许令周. 基于概率加权共轭梯度算法的混凝土超声波层析成像[J]. 计算物理, 2015, 32(3):293-298.
Liu Jian-jun, Xu Ling-zhou. Probability weighted conjugate gradient algorithm for concrete ultrasonic tomography imaging[J]. Chinese Journal of Computational Physics, 2015, 32(3):293-298.
20 Kleinman R E, van den Berg P M. A contrast source inversion method[J]. Inverse Problem, 1997, 13(6):1607-1620.
21 Abubakar A, Pan G, Li M, et al. Three-dimensional seismic full-waveform inversion using the finite-difference contrast source inversion method[J]. Geophysical Prospecting, 2011, 59:874-888.
22 Li Jing-he, Gan Li, Qin Hang. Acoustic velocity tomography for damage detection in concrete[C]∥29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 2017: 146-149.
23 LI G 恰贝斯. 积分方程简明教程[M]. 刘家琦译. 哈尔滨:哈尔滨工业大学出版社, 1985.
24 van der Vorst H A. BI-CGSTAB: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing,1992, 13(2):631-644.
25 Xu X M, Liu Q H. The BCGS-FFT method for electromagnetic scattering from inhomogeneous objects in a planarly layered medium[J]. IEEE Antennas and Wireless Propagation Letters, 2002, 1(1):77-80.
26 Bloemenkamp R F, Abubakar A, Berg P M V D. Inversion of experimental multi-frequency data using the contrast source inversion method[J]. Inverse Problems, 2001, 17(6): 1611-1622.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!