Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 1990-1996.doi: 10.13229/j.cnki.jdxbgxb20200659

Previous Articles    

Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm

Jian-xin FENG(),Qiang WANG,Ya-lei WANG,Biao XU   

  1. Academy of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2020-08-27 Online:2021-11-01 Published:2021-11-15

Abstract:

Aiming at the problem of the nonlinear and time-varying characteristics of ultrasonic motor, a fuzzy self-tuning PID controller is designed, and the parameters of the fuzzy self-tuning PID controller are optimized by using an improved quantum genetic algorithm, which can improve the dynamic performance and adaptability of the system. In order to overcome the shortcomings of traditional quantum genetic algorithm, five improving measures are taken, including the coding mode, population initialization, quantum rotation gate, quantum mutation and adding quantum catastrophe. The simulation results show that the improved quantum genetic algorithm can improve the convergence performance and the premature population problem of traditional quantum genetic algorithm. At the same time, the fuzzy self-tuning PID controller based on the improved quantum genetic algorithm significantly improves the dynamic and stable state performance of the ultrasonic motor system compared with the classical fuzzy self-tuning PID controller.

Key words: control theory and control engineering, ultrasonic moto, fuzzy PID controller, improved quantum genetic algorithm

CLC Number: 

  • TP273

Fig.1

Structure of ultrasonic motor control system"

Fig.2

Structure of fuzzy self-tuning PID controller"

Fig.3

Flow chart of quantum genetic algorithm"

Fig.4

Flow chart of improved quantumgenetic algorithm"

Fig.5

Parameter transfer flow chart ofquantum genetic algorithm"

Table 1

Comparison of initial states of twooptimization algorithms"

算法

种群

规模

基因

位数

变异

概率

转角

初值

迭代
IQGA4050.050.04π200
QGA40600.050.04π200

Fig.6

Comparison of iterative process oftwo optimization algorithms"

Table 2

Comparison of iterative optimization results"

算法优化参数名称性能指标
eecΔKPΔKIΔKD
IQGA0.02730.001 3700.016 606.720.003 3245.08
QGA0.02620.000 7320.003 675.820.002 1546.93

Fig.7

Comparison of simulation results"

Table 3

Comparison of simulation results ofthree controllers"

控制系统

上升

时间/s

调节

时间/s

超调量/%

性能

指标

IQGA-FUZZY-PID0.00380.0059无超调45.08
FUZZY-PID0.00870.01396.1347.93
PID0.01170.019911.9350.34

Fig.8

Change of controller parameters"

1 张俊峰. 直线超声电机建模仿真及驱动控制器设计[D]. 深圳: 哈尔滨工业大学深圳研究生院, 2014.
Zhang Jun-feng. Modeling simulation and driving controller design of linear ultrasonic motor[D]. Shenzhen: Shenzhen Graduate School, Harbin Institute of Technology, 2014.
2 李霞, 陈维山, 谢涛. 双锥面齿自支撑轴系行波超声电机设计与有限元分析[J]. 吉林大学学报:工学版, 2008, 38(4): 940-945.
Li Xia, Chen Wei-shan, Xie Tao. Finite element analysis and experiment on travelling-wave ultrasonic motor with two-sided cone-shaped teeth and half-supported shafting[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(4): 940-945.
3 Wang Rui-qi, Li Ke, Cui Na-xin, et al. A new PID-type fuzzy neural network controller based on genetic algorithm with improved smith predictor[C]∥Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 2009:5708-5713.
4 黄文文, 宋璐, 史敬灼. 超声波电机P型迭代学习转速控制[J]. 微电机, 2019, 52(6): 78-82.
Huang Wen-wen, Song Lu, Shi Jing-zhuo. P-type iterative learning speed control of ultrasonic motor[J]. Micromotors, 2019, 52(6): 78-82.
5 贺红林, 朱华, 赵淳生. 超声电机基于模糊PI技术的位置控制[J]. 机械科学与技术, 2006,25(5):603-607.
He Hong-lin, Zhu Hua, Zhao Chun-sheng. Position control of an ultrasonic motor using fuzzy PI technique[J]. Mechanical Science and Technology for Aerospace Engineering, 2006,25(5):603-607.
6 郑春娇, 朱延枫. 基于模糊PID的超声电机控制[J]. 辽宁工业大学学报:自然科学版, 2011, 31(2): 95-98.
Zhen Chun-jiao, Zhu Yan-feng. Control of ultrasonic motor based on fuzzy PID[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2011, 31(2): 95-98.
7 孙晓明. 量子计算若干前沿问题综述[J]. 中国科学: 信息科学, 2016, 46(8): 982-1002.
Sun Xiao-ming. A survey of some frontier problems in quantum computing[J]. Scientia Sinica(Informationis), 2016, 46(8): 982-1002.
8 李静, 余春贤. 基于模糊与PID的车辆底盘集成控制系统[J]. 吉林大学学报:工学版, 2013,43():509-513.
Li Jing, Yu Chun-xian. Vehicle chassis integrated control system based on fuzzy and PID[J]. Journal of Jilin University(Engineering and Technology Edition), 2013,43(Sup.1):509-513.
9 陈垚彤. 基于优化问题的量子遗传算法研究[D]. 成都: 电子科技大学计算机科学与工程学院, 2019.
Chen Yao-tong. Research on quantum genetic algorithm based on timization problems[D]. Chengdu: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 2019.
10 李士勇, 李盼池, 袁丽英. 量子遗传算法及在模糊控制器参数优化中的应用[J]. 系统工程与电子技术, 2007, 29(7): 1134-1138.
Li Shi-yong, Li Pan-chi, Yuan Li-ying. Quantum genetic algorithm with application in fuzzy controller parameter optimization[J]. Systems Engineering and Electronics, 2007, 29(7): 1134-1138.
11 王卫星. 基于改进鸡群算法的模糊PID控制器设计[J]. 自动化技术与应用, 2019, 38(9): 1-5.
Wang Wei-xing. Design of fuzzy PID controller based on improved chicken swarm algorithm[J]. Techniques of Automation and Applications, 2019, 38(9):1-5.
12 刘玉可, 史敬灼. 基于简化模糊规则的超声波电机模糊PI转速控制[J]. 电机技术, 2019,39(6): 16-19, 43.
Liu Yu-ke, Shi Jing-zhuo. Fuzzy PI speed control of the ultrasonic motor based upon simplified fussy rules[J]. Electrical Machinery Technology, 2019,39(6):16-19, 43.
[1] Yan MA,Jian-fei HUANG,Hai-yan ZHAO. Method of vehicle formation control based on vehicle to vehicle communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 711-718.
[2] DENG Li-fei, SHI Yao-wu, ZHU Lan-xiang, YU Ding-li. Failure detection of closed-loop systems and application to SI engines [J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[3] LI Xia1,2, CHEN Wei-shan1, XIE Tao1 . Finite element analysis and experiment on travelling-wave ultrasonic motor
with two-sided cone-shaped teeth and self-supported shafting
[J]. 吉林大学学报(工学版), 2008, 38(04): 940-945.
[4] GE Hong-wei1,LI Xiao-lin2,LIANG Yan-chun3,HE Xiang-dong4 . Immune PSO-based dynamic recurrent neural network for identifying and controlling nonlinear systems
[J]. 吉林大学学报(工学版), 2008, 38(04): 858-864.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!