Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 63-69.doi: 10.13229/j.cnki.jdxbgxb20200730

Previous Articles     Next Articles

Fault propagation impact assessment of machining center components

Gui-xiang SHEN(),Lan LUAN,Ying-zhi ZHANG(),Li-ming MU,Shu-bin LIANG   

  1. College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2020-09-22 Online:2022-01-01 Published:2022-01-14
  • Contact: Ying-zhi ZHANG E-mail:shengx@jlu.edu.cn;zhangyz@jlu.edu.cn

Abstract:

In order to evaluate the influence of fault propagation of machining center components, identify the key components of the system quickly and accurately, and control the fault propagation effectively, the fault propagation path between components is characterized by the combination of fault propagation mechanism analysis and directed graph. DWNodeRank algorithm is used to evaluate the fault influence degree among components, and the fault propagation rate of components was calculated based on the failure rate index. Considering the effective reachable path, the influence force value of fault propagation is calculated based on the improved ASP algorithm, and the fault propagation influence is evaluated. An example analysis results show that the DWNodeRank algorithm can reduce iteration complexity effectively and evaluate node influence degree accurately considering the direction and intensity of fault propagation. The fault propagation rate is used as the basis for evaluating the influence of fault propagation, and its dynamic time-varying characteristics make the evaluation results real-time and accurate, which is of great significance to the health maintenance of machining center.

Key words: machining center, fault propagation directed graph, fault propagation rate, fault propagation influence

CLC Number: 

  • TG659

Fig.1

Iterative flowchart"

Table 1

Statistical table of fault propagation times"

前因组件故障组件传播次数
主轴S刀库M5
主轴S进给J2
数控NC主轴S1
数控NC刀库M1
数控NC进给J1
液压D主轴S1
液压D刀库M1
电气V主轴S1
电气V刀库M3
电气V进给J2
电气V数控NC1
电气V冷却W1
气动G主轴S1
气动G刀库M4
润滑L主轴S1
润滑L刀库M1
润滑L进给J4
冷却W进给J1
辅助K进给J1

Fig.2

Fault propagation directed graph"

Table 2

Machining center component impact ranking"

组 件影响度值排序结果
主轴S0.09173
刀库M0.07929
进给J0.07929
数控NC0.08875
液压D0.08656
电气V0.14611
气动G0.09134
润滑L0.09532
冷却W0.08147
辅助K0.08147
工作台T0.07929

Table 3

Fault influence degree between machining center components"

有向边影响度值排序有向边影响度值排序
S→M0.997 32211V→NC0.969 65916
S→J0.997 32211V→W0.958 70717
NC→S0.999 8624G→S0.999 9981
NC→M0.998 3988G→M0.997 47910
NC→J0.998 3988L→S0.999 8155
D→S0.999 5746L→M0.995 73513
D→M0.999 0297L→J0.995 73513
V→S0.973 48215W→J0.999 9062
V→M0.954 89718K→J0.999 9062
V→J0.954 89718

Table 4

Average failure rate of each component at different times"

组 件不同组件下的平均故障率
5000 h6540 h
主轴S0.00220.0021
刀库M0.00320.0029
进给J0.00140.0011
数控NC0.00060.0005
压D0.00240.0020
电气V0.00160.0014
气动G0.00080.0011
润滑L0.00120.0011
冷却W0.00280.0021
辅助K0.00080.0009
工作台T0.00160.0014

Table 5

Fault propagation rate between machining center components"

有向边

故障传播率值

5000 h

影响传播率值

6540 h

S→M0.002 1940.002 094
S→J0.002 1940.002 094
NC→S0.000 6000.000 500
NC→M0.000 5990.000 499
NC→J0.000 5990.000 499
D→S0.002 3990.001 999
D→M0.002 3980.001 998
V→S0.001 5580.001 363
V→M0.001 5280.001 337
V→J0.001 5280.001 337
V→NC0.001 5510.001 358
V→W0.001 5340.001 342
G→S0.000 8000.001 100
G→M0.000 7980.001 097
L→S0.001 2000.001 100
L→M0.001 1950.001 095
L→J0.001 1950.001 095
W→J0.002 8000.002 100
K→J0.000 8000.000 900

Table 6

Fault propagation impact of machining center components"

系统

组件

故障传播影响力

(5000 h)/排序

故障传播影响力

(6540 h)/排序

主轴S0.004 388/30.004 189/2
刀库M0/90/9
进给J0/90/9
数控NC0.001 801/60.001 500/7
液压D0.004 807/20.004 006/3
电气V0.007 713/10.006 747/1
气动G0.001 601/70.002 202/5
润滑L0.003 595/40.003 295/4
冷却W0.002 800/50.002 100/6
辅助K0.000 800/80.000 900/8
工作台T0/90/9
1 Muchnik L, Aral S, Taylor S J. Social influence bia:a randomized experiment[J]. Science,2013, 341(6146):647-651.
2 Morone F, Makse H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563):65-68.
3 Freeman L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1):35-41.
4 Poulin R, Boily M C, Mâsse B R. Dynamical systems to define centrality in social networks[J]. Social Networks, 2000, 22(3):187-220.
5 Chen D B, Gao H, Zhou T, et al. Identifying influential nodes in large-scale directed networks:the role of clustering[J]. PLoS One, 2013, 8(10):No. e77455.
6 Brin S, Page L. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1-7):107-117.
7 胡庆成,尹龑燊,马鹏斐,等. 一种新的网络传播中最有影响力的节点发现算法[J]. 物理学报, 2013, 62(14):9-19.
Hu Qing-cheng,Yin Yan-shen,Ma Peng-fei,et al. A new approach to identify influential spreaders in complex networks[J]. Acta Physica Sinica, 2013, 62(14):9-19.
8 刘影. 复杂网络中节点影响力挖掘及其应用研究[D]. 成都:电子科技大学航空航天学院, 2016.
Liu Ying. Research on ranking the influence of nodes on complex networks and its application[D]. Chengdu:School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, 2016.
9 Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6: 888-893.
10 Bao Z K, Ma C, Xiang B B, et al. Identification of influential nodes in complex networks:method from spreading probability viewpoint[J]. Physica A: Statistical Mechanics and its Applications, 2017, 468: 391-397.
11 阮逸润,老松杨,王竣德,等. 一种改进的基于信息传播率的复杂网络影响力评估算法[J]. 物理学报,2017, 66(20):312-322.
Ruan Yi-run, Lao Song-yang, Wang Jun-de, et al. An improved evaluating method of node spreading influence in complex network based on information spreading probability[J]. Acta Physica Sinica, 2017, 66(20):312-322.
12 赵之滢, 于海, 朱志良, 等. 基于网络社团结构的节点传播影响力分析[J]. 计算机学报, 2014, 37(4):753-766.
Zhao Zhi-ying, Yu Hai, Zhu Zhi-liang, et al. Identifying influential spreaders based on network community structure[J]. Chinese Journal of Computers, 2014, 37(4):753-766.
13 Morone F, Makse H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563): 65-68.
14 胡满玉. 基于链接关系的有向加权复杂网络关键节点识别技术研究[D]. 南京:南京理工大学计算机科学与工程学院, 2012.
Hu Man-yu. Research on key node recognition technology of directed weighted complex network based on link relationship[D]. Nan Jing:School of Computer Science and Engineering, Nanjing University of Science and Technology, 2012.
15 李庆扬,王能超,易大义. 数值分析[M]. 北京:清华大学出版社, 2008.
[1] YANG Zhao-jun, YANG Chuan-gui, CHEN Fei, HAO Qing-bo, ZHENG Zhi-tong, WANG Song. Parameter estimation of reliability model of machining center based on particle swarm optimization and support vector regression [J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[2] WANG Xiao-feng, SHEN Gui-xiang, ZHANG Ying-zhi, GU Dong-wei, LI Huai-yang, LIU Wei. Prioritizing failures of abc-axis feeding systems based on improved criticality and DEMATEL method [J]. 吉林大学学报(工学版), 2012, 42(01): 122-127.
[3] WANG Xiao-feng, SHEN Gui-xiang, ZHANG Ying-zhi, ZHANG Li-min, WANG Zhi-qiong, LIU Wei. Simulation of reliability and maintainability influence of machining center [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 160-163.
[4] WANG Xiao-feng,SHEN Gui-xiang,ZHANG Ying-zhi,CHEN Bing-kun,LI Huai-yang. Analysis on risk priority number of critical component of machining center based on group decision-making and various assignment ways [J]. 吉林大学学报(工学版), 2011, 41(6): 1630-1635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!