Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1601-1611.doi: 10.13229/j.cnki.jdxbgxb20200850

Previous Articles    

Oil film stiffness and damping of double⁃decker ball bearing in consideration of centrifugal expansion

Jing HU1,2(),Cong LI3,Bang-cheng ZHANG4,Xiao-li QIAO1,2,Xin-ming ZHANG1,2,5(),Xiao-ping ZHOU1,2   

  1. 1.College of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Jilin Province Innovation Center of Aerodynamic Science and Technology,Changchun 130022,China
    3.AVIC Aerodynaiviics Research Institute,Harbin 150001,China
    4.College of Mechanical and Electrical Engineering,Changchun University of Technology,Changchun 130022,China
    5.School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China
  • Received:2020-11-05 Online:2021-09-01 Published:2021-09-16
  • Contact: Xin-ming ZHANG E-mail:hjcust163@163.com;zxmcust163@163.com

Abstract:

The elastohydrodynamic lubrication of ball bearings is closely related to its dynamic performance. The accurate calculation of bearing elastohydrodynamic lubrication is the key to bearing speed analysis and reliability design. In this paper, the quasi-statics and elastohydrodynamic lubrication analysis model considering centrifugal expansion was established, that is, the influence model of centrifugal expansion. The influence of centrifugal expansion effect is analyzed. The results show that the stiffness and damping of the inner contact oil film decrease with the increase of the rotating speed; Considering the centrifugal expansion, the stiffness of the oil film increases and the damping decreases, and the amplitude of the change rate increases with the increase of the rotating speed. When the speed is close to high speed, the calculation accuracy can be improved by considering the centrifugal expansion. However, once the speed enters the high-speed region, the effect of centrifugal expansion can hardly be ignored.

Key words: mechanical design manufacturing and automation, double-decker ball bearing, elastohydrodynamic lubrication, centrifugal expansion, quasi-statics

CLC Number: 

  • TH133.33

Fig.1

Geometry relations between mth and nth ball center and curvature centre of raceway"

Fig.2

Flow chart of numerical analysis"

Table 1

Parameters of double-decker ball bearing"

参数数值
71901C71905C
球径/mm34.25
初始接触角/(°)1515
球的个数1721
内圈沟曲率半径系数0.5150.525
外圈沟曲率半径系数0.5150.525
节径/mm1833.5

Fig.3

Comparison of experimental interferogram and numerical simulation contour map"

Fig.4

Comparison of film thickness in literature and numerical simulation"

Fig.5

Variation of contact load of double-decker ball bearing with rotation speed"

Fig.6

Variation of contact stress of double-decker ball bearing with rotation speed"

Fig.7

Variation of entrainment velocity of double-decker ball Bearing with rotation speed"

Fig.8

Internal contact load comparison of inner bearing consider of centrifugal expansion"

Fig.9

Pressure diagram of elastohydrodynamic lubrication with a position angle of 0° at 16 000 r/min rotation speed"

Fig.10

Film thickness diagram of elastohydrodynamic lubrication with position angle 0° at 16 000 r/min rotation speed"

Fig.11

Contact load contrast of outer bearing inner ring after consider of centrifugal expansion"

Fig.12

Oil film stiffness contrast of double-decker ball bearing after consider of centrifugal expansion"

Fig.13

Oil-film damping contrast of inner ring contact between inner and outer layers of double-decker ball bearing after consider of centrifugal expansion"

Table 2

Change rate of oil film stiffness and damping at different speeds"

转速/(r·min-1IKmax/%OKmax/%ICmax/%OCmax/%
10 0002.189 820.064 410.482 970.014 02
12 0003.135 920.093 420.695 720.020 34
14 0004.240 430.128 130.947 320.027 90
16 0005.496 680.168 641.237 810.036 73
18 0006.897 090.214 981.567 240.046 84
20 0008.433 190.267 101.935 590.058 22
22 00010.095 730.324 852.342 840.070 83
24 00011.874 690.388 052.788 890.084 64
26 00013.759 410.456 483.273 570.099 61
28 00015.738 660.529 983.796 660.115 70
30 00017.800 770.608 424.357 790.132 89
32 00019.933 710.691 754.956 530.151 16
34 00022.125 290.779 985.592 310.170 54
36 00024.363 280.873 176.264 430.191 02
1 徐涛, 赵玉洁, 邵晴, 等. 联合载荷下角接触球轴承静态接触特性分析[J]. 吉林大学学报: 工学版,2017, 47(4): 1114-1120.
Xu Tao, Zhao Yu-jie, Shao Qing, et al. Analysis of static contact characteristics of angular contact ball bearing under combined loads[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(4): 1114-1120.
2 Anderson W J. Tribology for Aerospace Application[M]. 1973.
3 Prashad H. A new generation double decker high precision rolling element bearing-concept, development and investigations[J]. ASLE Transactions, 2001, 44(2): 203-208.
4 Prashad H. Relative comparison of stiffness and damping properties of double decker high precision and conventional rolling-element bearings[J]. Tribology International, 2002, 35: 265-269.
5 Prashad H. A theoretical approach to evaluating the performance characteristics of double-decker high-precision bearings[J]. Lubrication Science, 2010, 10(3): 251-263.
6 Prashad H. A new generation of rolling-element bearing with an outline of its performance advantages[J]. Solving Tribology Problems in Rotating Machines, 2006: 228-242.
7 Prashad H. An analysis of axial deflection of double-decker high-precision bearings vis-à-vis conventional ball bearings[J]. Lubrication Science, 2006, 18(2): 119-128.
8 许磊. 新型滚动轴承的力学性能研究[D]. 南京: 南京航空航天大学机电学院, 2010.
Xu Lei. Research on mechanical characteristics of a new type ball bearings[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, 2010.
9 朱益利, 徐龙祥. 双层滚珠轴承力学特性分析[J]. 航空动力学报, 2011, 26(8): 1914-1920.
Zhu Yi-li, Xu Long-xiang. Mechanical research of double-decker ball bearing[J]. Journal of Aerospace Power, 2011, 26(8): 1914-1920.
10 蒋鹏. 双层滚动轴承运动学研究[D]. 南京: 南京航空航天大学机电学院, 2011.
Jiang Peng. Research on motion-characteristics of double-decker rolling-element bearings[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, 2011.
11 郑衍通. 新型保护轴承热学特性研究[D]. 南京: 南京航空航天大学机电学院, 2010.
Zheng Yan-tong. Research on thermal characteristics of type auxiliary bearing[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, 2010.
12 金超武, 余旭东, 朱益利, 等. 双层轴承的载荷分布研究[J]. 机械科学与技术, 2014, 33(2): 204-207.
Jin Chao-wu,Yu Xu-dong,Zhu Yi-li, et al. Research on the load distribution of a double-decker ball bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(2): 204-207.
13 Xu L X, Yu C T, Yu X D. Research on the Mechanical properties of "Z" type double-decker ball bearings[J]. Journal of Tribology, 2014, 136(1): 011102.
14 Zhu Y L, Zhang Y C, Jin C W. Research on the mechanical properties of a new "I" type double-decker ball bearing[J]. Journal of Tribology, 2015, 138(2): 021102.
15 Zhu Y L, Zheng Z Q. The use of double-decker catcher bearing with face-to-face installed inner layer bearings[J]. Modern Physics Letters B, 2017, 31(19-21): 1740012.
16 俞成涛, 徐龙祥, 蒋鹏, 等. 双层轴承转速分配比[J]. 南京航空航天大学学报, 2012, 44(3): 285-289.
Yu Cheng-tao, Xu Long-xiang, Jiang Peng, et al. Speed distribution ratio of double-decker rolling-element bearings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(3): 285-289.
17 Wu J Q, Wang L Q, He T, et al. Investigation on the angular contact ball bearings under low speed and heavy load with coupled mixed lubrication and quasi dynamic analysis[J]. Lubrication Science, 2020(2): 108-120.
18 Wang B M, Yun X L, Liao X Y, et al. Analysis of thermal effect on elastohydrodynamic lubrication in angular contact ball bearing[J]. Applied Mechanics & Materials, 2015, 741: 443-448.
19 史修江. 航空发动机主轴轴承动态性能和热弹流润滑状态耦合分析[D].哈尔滨: 哈尔滨工业大学机电工程学院, 2018.
Shi Xiu-jiang. Coupling analysis of dynamic performance and TEHL state of aeroengine main shaft bearing[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2018.
20 吴明星, 吴维, 胡纪滨, 等. 考虑自旋的高速角接触球轴承油膜刚度计算[J]. 振动与冲击, 2014, 33(10): 38-42.
Wu Ming-xing, Wu Wei, Hu Ji-bin, et al. Calculation of oil film stiffness of high speed angular contact ball bearing considering spin[J]. Vibration and Impact, 2014, 33(10): 38-42.
21 Zhang Y Y. Influence of lubrication starvation and surface waviness on the oil film stiffness of elastohydrodynamic lubrication line contact[J]. Journal of Vibration and Control, 2018, 24(5): 924-936.
22 Bizarre L, Nonato F, Cavalca K L. Formulation of five degrees of freedom ball bearing model accounting for the nonlinear stiffness and damping of elastohydrodynamic point contacts[J]. Mechanism & Machine Theory, 2018, 124: 179-196.
23 Lei C L, Li F H, Guo J F, et al. Analysis on the oil film stiffness of rolling bearings based on multi parameter coupling[J]. Journal of Vibration and Shock, 2018, 37(10): 225-232.
24 杨佐卫, 殷国富, 尚欣, 等. 高速电主轴热态特性与动力学特性耦合分析模型[J]. 吉林大学学报: 工学版, 2011, 41(1): 100-105.
Yang Zuo-wei, Yin Guo-fu, Shang Xin, et al. Coupling analysis model of thermal and dynamic characteristic for high-speed motorized spindle[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1): 100-105.
25 Lu Z Y, Lv Y J, Zhang Y F, et al. Micro thermal elastohydrodynamic lubrication analysis of angular contact ball bearing considering thermal elastic deformation[J]. Tribology, 2018, 38(3): 299-308.
26 Zivkovic A, Zeljkovic M, Tabakovic S, et al. Mathematical modeling and experimental testing of high-speed spindle behavior[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5-8): 1071-1086.
27 Zhu Y L, Xu L X. The radial stiffness and application of double-decker ball bearing[J]. Key Engineering Materials, 2011, 450: 353-356.
28 Feng G, Yang P R, Qu S Y. On the theory of thermal elastohydrodynamic lubrication at high slide-roll ratios—circular glass-steel contact solution at opposite sliding[J]. Journal of Tribology, 2001, 123(4): 816-821.
29 Walford T L H, Stone B J. The sources of damping in rolling element bearings under oscillating conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1983, 197(4): 225-232.
30 Zhang Y G, Wang W Z, Zhang S G, et al. Experimental study of EHL film thickness behaviour at high speed in ball-on-ring contacts[J]. Tribology International, 2017, 113: 216-223.
31 Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals—Manufacturing Technology, 2010, 59(2): 781-802.
[1] YANG Yi-yang, XU Nan, GUO Kong-hui, CHEN Ping. Application of hydroplaning mechanism in high-speed steel trip tire test rig [J]. 吉林大学学报(工学版), 2016, 46(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!