Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1764-1769.doi: 10.13229/j.cnki.jdxbgxb20210748

Previous Articles    

Time series prediction algorithm of vibration frequency of rotating machinery

Zhen SONG(),Jie LIU   

  1. School of Mechanical Engineering,Southwest Petroleum University,Chengdu 610500,China
  • Received:2021-08-08 Online:2022-08-01 Published:2022-08-12

Abstract:

The non-stationary characteristics of rotating machinery equipment increase the difficulty of predicting the operating state. Therefore, based on the neural network technology, a vibration frequency time series prediction method is constructed. Combining the gradient descent method and Newton method to optimize the back-propagation neural network, aiming at the seasonality and trend of the time series of actual mechanical vibration frequency, the first-order backward difference is processed by the difference method, the autoregressive sequence is deduced, and the time series prediction model of rotating machinery vibration frequency is obtained. In the experimental link, the vibration frequency time series within one hour is predicted for the rotor of a steam turbine generator unit in a power plant, and the experiment is completed on the basis of setting the parameters such as the number of network layers. From the absolute error and relative error values, the proposed method has the ability to reflect the vibration frequency trend, and the prediction accuracy is ideal.

Key words: electromechanical engineering, back propagation neural network, rotating machinery, vibration frequency, time series, objective function gradient

CLC Number: 

  • TH113

Fig.1

Schematic diagram of time series of sampling points"

Fig.2

Influence of number of network layers on model"

Fig.3

Influence of learning and training parameters on model"

Table 1

Forecast model network parameters"

名 称数值
输入层单元数量4
输出层单元数3
隐藏层数3
学习速率0.05
学习精度0.001
网络训练次数6

Fig.4

Comparison of actual and predicted results"

Fig.5

Curve of relative error and absolute error"

1 翟富刚, 尹燕斌, 李超, 等. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报: 工学版, 2021, 51(2): 442-449.
Zhai Fu-gang, Yin Yan-bin, Li Chao, et al. Stiffness modeling and feedforward control of servo electric cylinder drive system[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 442-449.
2 Yan X, Jia M. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J]. Knowledge-Based Systems, 2019, 163: 450-471.
3 Casamenti E, Yang T, Vlugter P, et al. Vibration monitoring based on optical sensing of mechanical nonlinearities in glass suspended waveguides[J]. Optics Express, 2021, 29(7): 10853-10862.
4 Hu Y, Cui F, Tu X, et al. Bayesian estimation of instantaneous speed for rotating machinery fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2020, 68(9): 8842-8852.
5 Song X, Ezzeldin Y H, Caire G, et al. Efficient beam scheduling for half-duplex mmwave relay networks[J]. IEEE Transactions on Communications, 2021, 69(9): 5773-5789.
6 Kim S, Park D J, Chang D E. RAPIDO: a rejuvenating adaptive PID-type optimiser for deep neural networks[J].Electronics Letters,2019, 55(16): 899-901.
7 杨壮, 周渠, 赵耀洪, 等. 基于人工神经网络和多频超声波检测技术的变压器油界面张力预测[J]. 高电压技术, 2019, 45(10): 3343-3349.
Yang Zhuang, Zhou Qu, Zhao Yao-hong, et al. Prediction of interfacial tension of transformer off based on artificial neural network and multi-frequency ultrasonic testing technology[J]. High Voltage Engineering, 2019, 45(10): 3343-3349.
8 张明光, 蔡云, 丁晶晶. 基于交替迭代法的MMC-MTDC交直流混合系统的潮流分析[J]. 兰州理工大学学报, 2019, 45(6): 91-98.
Zhang Ming-guang, Cai Yun, Ding Jing-jing. Power flow analysis of MMC-MTDC AC/DC hybrid system based on alternating-iteration method[J]. Journal of Lanzhou University of Technology, 2019, 45(6): 91-98.
9 Cho Y, Farrokhkish M, Norrlinger B, et al. An artificial neural network to model response of a radiotherapy beam monitoring system[J]. Medical Physics, 2020, 47(4): 1983-1994.
10 Pommerenke H W, Heller J, Zadeh S G, et al. Computation of lossy higher order modes in complex SRF cavities using Beyn's and Newton's methods on reduced order models[J]. International Journal of Modern Physics A, 2019, 34(36): 1942037.
11 尹晓丽, 孙凤, 李春明. 连续负梯度方向获得共轭方向的六寻优化方法[J]. 计算机科学与探索, 2019, 13(9): 1604-1612.
Yin Xiao-li, Sun Feng, Li Chun-ming. Six search optimization method on obtaining conjugate direction after continuous negative gradient directions[J]. Journal of Frontiers of Computer Science & Technology, 2019, 13(9): 1604-1612.
12 Zhu C, Gates D A, Hudson S R, et al. Identification of important error fields in stellarators using the Hessian matrix method[J]. Nuclear Fusion, 2019, 59(12): 126007.
13 张伟, 李焱骏, 师奕兵, 等. 石油管道脉冲远场涡流信号特征分析与处理[J]. 仪器仪表学报, 2019, 40(1): 12-20.
Zhang Wei, Li Yan-jun, Shi Yi-bing, et al. Feature analysis and processing of pulsed remote field eddy current signal in oil pipes[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 12-20.
14 杨德磊, 童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报: 工学版, 2019, 49(6): 1891-1899.
Yang De-lei, Tong Le-wei. Calculation formula of SCF for CHS-CFSHS welded T-joints with brace under axial tension[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1891-1899.
15 Melnyk S S, Yampol'Skii V A, Usatenko O V. Continuous stochastic processes with non-local memory[J]. Physical Review E, 2019(4): 1-7.
16 Han S, Rajendran S. Comparison of time series methods and machine learning algorithms for forecasting taiwan blood services foundation's blood supply[J/OL]. [2021-05-18].
17 张姝玮, 郭忠印, 陈立辉.基于自回归求积移动平均的制动器温度预测方法[J]. 吉林大学学报: 工学版, 2020, 50(6): 2080-2086.
Zhang Shu-wei, Guo Zhong-yin, Chen Li-hui. Brake temperature prediction method based on autoregressive integrated moving average model[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2080-2086.
18 赵志文, 杨慧超, 彭毳鑫. 自回归模型偏自相关函数截尾性检验[J]. 统计与决策, 2019, 35(8): 5-8.
Zhao Zhi-wen, Yang Hui-chao, Peng Xiao-xin. Truncation test of partial autocorrelation function for autoregressive model[J]. Statistics and Decision, 2019, 35(8): 5-8.
19 罗忠涛, 詹燕梅, 郭人铭, 等. 脉冲噪声中基于指数函数的可变拖尾非线性变换设计[J]. 电子与信息学报, 2020, 42(4): 932-940.
Luo Zhong-tao, Zhan Yan-mei, Guo Ren-ming, et al. Variable tailing nonlinear transformation design based on exponential function in impulsive noise[J]. Journal of Electronics & Information Technology, 2020, 42(4): 932-940.
20 Zhao Y, Ke X, Huang L, et al. On cycle-period estimation: a Bayesian information criterion[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3949-3954.
[1] Hong-zhi WANG,Ting-ting WANG,Huang-shui HU,Xiao-fan LU. PID control based on BP neural network optimized by Q⁃learning for speed control of BLDCM [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2280-2286.
[2] Yong-ying TAN,Shan-zhen YI,Da-bing XUE,Xiao-ming WANG,Lei YUAN. Weight adaptive control for trotting gait of load-carrying quadruped walking vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1506-1517.
[3] LIU Shu, JIANG Qi-gang, ZHU Hang, LI Xiao-dong. Reconstruction of Landsat NDVI time series of Xianghai natural deserve based on a hybrid filtering algorithm Hyb-F [J]. 吉林大学学报(工学版), 2018, 48(3): 957-967.
[4] WAN Ping, WU Chao-zhong, LIN Ying-zi, MA Xiao-feng. Driving anger detection based on multivariate time series features of driving behavior [J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435.
[5] WANG Yin-tong, WANG Jian-dong, CHEN Hai-yan. Time series dimensionality reduction and aircraft model recognition in airport-noise [J]. 吉林大学学报(工学版), 2016, 46(4): 1202-1208.
[6] WANG Shi, SUI Yong-xin, DONG Yan, YANG Huai-jiang. LAN traffic flow prediction using improved small data method [J]. 吉林大学学报(工学版), 2016, 46(4): 1254-1260.
[7] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[8] ZHENG Kou-quan, LEI Ying-jie, WANG Rui, YU Xiao-dong. Long-term intuitionistic fuzzy time series forecasting based on vector quantization [J]. 吉林大学学报(工学版), 2014, 44(3): 795-780.
[9] WANG Gai-ge, GUO Li-hong, DUAN Hong, LIU Luo, WANG He-qi. Target threat assessment using glowworm swarm optimization and BP neural network [J]. 吉林大学学报(工学版), 2013, 43(04): 1064-1069.
[10] LIU Han-bing, LI Guo-heng, TAN Guo-jin, SUN Yan-yi. Real-time prediction method of slop displacement based on time series analysis [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 193-197.
[11] ZHANG Yong, GUAN Wei. Combined dynamic modeling to forecast traffic volume time series [J]. 吉林大学学报(工学版), 2010, 40(05): 1209-1214.
[12] ZHAO Zhi-qiang, ZHANG Yi, HU Jian-ming. Multi-dimensional regional traffic status analysis based on GTM-TT [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 1-0006.
[13] ZHAO Ding-xuan,CUI Gong-jie,CHEN Ning,ZHANG Hong-yan . Control system for fourparameter automatic transmission
of construction vehicle based on BP neural network
[J]. 吉林大学学报(工学版), 2008, 38(05): 1091-1094.
[14] Liao Qing-bin, Li Shun-ming, Qin Xiao-pan . Comparison of feature extraction methods of vehicle vibration signal [J]. 吉林大学学报(工学版), 2007, 37(04): 910-915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!