Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2685-2697.doi: 10.13229/j.cnki.jdxbgxb20210839

Previous Articles    

Distributed coding scheme for blockchain system based on regeneration codes

He-ling XIAO1(),Wang-mei GUO2,Jing WANG3   

  1. 1.School of Electronic & Control Engineering,Chang'an University,Xi'an 710064,China
    2.State Key Laboratory of Integrated Service Networks,Xidian University,Xi'an 710071,China
    3.School of Information Engineering,Chang'an University,Xi'an 710064,China
  • Received:2021-08-28 Online:2022-11-01 Published:2022-11-16

Abstract:

A novel way of distributed coding schemes to reduce blockchain nodes' memory requirements and network load using (n,k,d) exact-regeneration MSR (ER-MSR) codes is presented. Our scheme has the same protocol for mining, broadcasting, and verification of blocks as Bitcoin-type blockchains. As for the difference, the full nodes encode data across multiple blocks and do not have to store all blocks. Specially, a group of k blocks only need to store one block. To exactly read a block data that is not stored locally, it can be realized by connecting to d helper nodes and downloading a small amount of data. While maintaining the integrity and availability of block, this scheme leads to a significant reduction in storage and recovery communication costs, and the scalability of the system is enhanced. It is proved that this system has enlarged overall storage capability and reduced the cost of network bandwidth when more nodes attend the blockchain.

Key words: blockchain, distributed storage, regeneration codes, storage scalability

CLC Number: 

  • TP302

Fig.1

Illustration of the block structure"

Fig.2

Illustration of comprising a group of blocks"

Table 1

Important symbols used in this article"

符号说 明符号说 明
B(i)i个区块α数据符号长度
k区块分组长度A(m)区块数据矩阵
aij数据元素v?i编码码字
T区块大小V(m)区块编码矩阵
a?ij数据符号d帮助节点个数

Fig.3

Lustration of repairing of failed node two"

Fig.4

Decoding complexity with different blockchain systems"

Fig.5

Average storage overhead per block with different blockchain systems"

Fig.6

Storage capability with different blockchain systems"

Fig.7

Recovery communication cost with different blockchain systems"

1 Satoshi N. Bitcoin: a peer-to-peer electronic cash system[J/OL]. [2020-05-22].
2 Wood G. Ethereum: a secure decentralised generalised transaction ledger[J/OL]. [2020-11-12].
3 Schwartz D, Youngs N, Britto A. The ripple protocol consensus algorithm[J/OL]. [2020-08-16].
4 Kiavias A, Russell A, David B, et al. Ouroboros: a provably secure proof-of-stake blockchain protocol[C]∥Advances in Cryptology-CRYPTO 2017, 37th Annual International Cryptology Conference, Santa Barbara, USA,2017: 357-388.
5 Azaria A, Ekblaw A, Vieira T, et al. MedRec: using blockchain for medical data access and permission management[C]∥2nd International Conference on Open and Big Data, Vienna, Austria, 2016: 25-30.
6 Kosba A, Miller A, Shi E, et al. Hawk: the blockchain model of cryptography and privacy-preserving smart contracts[C]∥IEEE Symposium on Security and Privacy, San Jose, USA, 2016: 839-858.
7 Xu C, Wang K, Guo M. Intelligent resource management in blockchain-based cloud datacenters[J]. IEEE Cloud Computing, 2018, 4(6): 50-59.
8 Underwood S. Blockchain beyond Bitcoin[J]. Communications of the ACM,2016,59(11):15-17.
9 曾诗钦, 霍如, 黄韬,等. 区块链技术研究综述:原理,进展与应用[J]. 通信学报,2020,41(1):134-151.
Zeng Shi-qin, Huo Ru, Huang Tao, et al. Survey of Blockchain: principle, progress and aplication[J]. Journal on Communications, 2020, 41(1): 134-151.
10 Churyumov A. ByteBall: a decentralized system for storage and transfer of value[J/OL]. [2021-03-04].
11 Raman R K, Varshney L R. Dynamic distributed storage for blockchains[C]∥IEEE International Symposium on Information Theory, Vail, USA, 2018: 2619-2623.
12 Kim Y, Raman R K, Kim Y S, et al. Efficient local secret sharing for distributed blockchain systems[J]. IEEE Communications Letters,2019,23(2):282-285.
13 Dai M, Zhang S, Wang H, et al. A low storage room requirement framework for distributed ledger in blockchain[J]. IEEE Access, 2018, 6: 22970-22975.
14 Perard D, Lacan J, Bachy Y, et al. Erasure code-based low storage blockchain node[C]∥IEEE International Conference on Internet of Things (iThings) . Halifax, Canada, 2018: 1622-1627.
15 Qi X D, Zhang Z, Jin C Q, et al. A reliable storage partitioning for permissioned blockchain[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(1): 14-27.
16 Wu H H, Ashikhmin A, Wang X D, et al. Distributed error correction coding scheme for low storage blockchain systems[J]. IEEE Internet of Things Journal, 2020, 7(8): 7054-7071.
17 Rules Protocol, Accessed: June 23, 2020[EB/OL]. [2021-04-11].
18 Block Size Limit Controversy, Accessed: April 8, 2019[EB/OL]. [2020-04-15].
19 Etherchain,Accessed: Jun 10, 2021[EB/OL]. [2022-04-06].
20 王意洁,许方亮,裴晓强.分布式存储中的纠删码容错技术研究[J].计算机学报,2017,40(1): 236-255.
Wang Yi-jie, Xu Fang-liang, Pei Xiao-qiang. Research on erasure code-based fault-tolerant technology for distributed storage[J]. Chinese Journal of Computers, 2017, 40(1): 236-255.
21 Rashmi K V, Shah N B, Ramchandran K, et al. Information-theoretically secure erasure codes for distributed storage[J]. IEEE Transactions on Information Theory, 2018, 64(3): 1621-1646.
22 Wu Y N, Dimakis A G, Ramchandran K. Deterministic regenerating codes for distributed storage[C]∥Proceeding of the 45th Annual Allerton Conference on Control, Computing and Communication, Urbana-Champaign, Illinois, USA, 2007: 1354-1362.
23 Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J]. IEEE Transactions on Information Theory, 2010, 56(9):4539-4551.
24 Dimakis A G, Ramchandran K, Wu Y N, et al. A survey on network codes for distributed storage[J]. Proceedings of the IEEE, 2011, 99(3): 476-489.
25 Ahlswede L, Cai N, Li R S-Y, et al. Network information flow[J]. IEEE Transaction Information Theory, 2000, 46(4): 1204-1216.
26 Li R S-Y, Yeung R W, Cai N. Linear network coding[J]. IEEE Transaction Information Theory, 2003, 49(2): 371-381.
27 Shah N B, Rashm K V, Kumar P V, et al. Distributed storage codes with repair-by-transfer and nonachievability of interior points on the storage-bandwidth tradeoff[J]. IEEE Transactions on Information Theory, 2012, 58(3): 1837-1852.
28 Rashmi K V, Shah N B, Kumar P V. Optimal exact-regenerating codes for distributed storage at the msr and mbr points via a product-matrix construction[J]. IEEE Transactions on Information Theory, 2011, 57(8): 5227-5239.
29 张司娜, 唐小虎, 李杰. 一类新的 ( k + 2 , k ) Hadamard MSR码[J]. 西南交通大学学报, 2016, 51(1):188-192, 200.
Zhang Si-na, Tang Xiao-hu, Li Jie. A new ( k + 2 , k ) Hadamard minimum storage regenerating code[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 188-192, 200.
[1] Bin-xiang JIANG,Hong-kui XU,Dan HE. Drug Efficiency improvement of drug detection big data based on blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1666-1678.
[2] Sheng-sheng WANG,Jing-yu CHEN,Yi-nan LU. COVID⁃19 chest CT image segmentation based on federated learning and blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173.
[3] Shu-tao SHEN,Zha-xi NIMA. Double chaos identifiable tampering image encryption method based on blockchain technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1055-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!