Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 377-383.doi: 10.13229/j.cnki.jdxbgxb20211088

Previous Articles    

Reliability prediction method of machining precision of machine tool parts based on fuzzy coupling

Xin-tian LIU1(),Mu-zhou MA1,Jia-long HE2   

  1. 1.School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    2.College of Mechanical and Aerospace,Jilin University,Changchun 130022,China
  • Received:2021-10-22 Online:2022-02-01 Published:2022-02-17

Abstract:

Based on the consideration of the tool error and its dimensional error, the dimensional accuracy prediction of the processed parts does not meet the actual use requirements, and a membership function model that couples fuzzy intervals and fuzzy weights is proposed. This model takes into account the fact that the proportion of various influencing factors in the processing process is not fixed, and it also dynamically characterizes the changes in the contribution of various influencing factors in the processing process. In addition, considering that the size of the actual part processing size is mostly fuzzy value, this paper regards the part size as a possibility distribution and constructs a new reliability prediction model combined with the fuzzy membership function. After comparing the predicted value with the experimental data, it is found that the accuracy of the reliability analysis of the machining accuracy has been significantly improved.

Key words: fuzzy interval coupling, fuzzy weights, dynamic weights, fuzzy reliability prediction

CLC Number: 

  • U463.53

Fig.1

Tool error"

Fig.2

Rotation error"

Table 1

Tool and rotation error reference table"

主参数公差值/μm
6789101112
>50~12015254080150250500
>120~250203050100200300600

Table 2

Part estimation interval table"

可能尺寸范围/mm
(149.0 150.2)(149.2 150.3)(149.5 150.1)
(149.6 150.2)(149.6 150.1)(149.7 150.1)
(149.8 150.1)(149.7 150.1)(149.8 150.3)
(149.9 150.0)

Table 3

Part estimation interval table"

x/mmμA
49.98000.9829
149.99000.9735
150.00000.9556
150.01000.9413
150.02000.9166
150.03000.8981

Fig.3

Comparison chart of error and tolerance affiliation functions"

Fig.4

Fuzzy weight affiliation function"

Fig.5

Comparison chart of unimproved and improved algorithms"

Fig.6

Histogram and fitted distribution of reliability"

1 范晋伟, 谢本田, 李晨宝. 数控机床精度优化设计的研究现状[J]. 工具技术, 2021, 55(7): 16-23.
Fan Jin-wei, Xie Ben-tian, Li Chen-bao. Current status of research on precision optimization design of CNC machine tools[J]. Tool Technology, 2021, 55(7): 16-23.
2 杨志清. 计数区间的模糊相关系数研究[J]. 统计与决策, 2020, 36(20): 28-32.
Yang Zhi-qing. Research on fuzzy correlation coefficients of counting intervals[J]. Statistics and Decision Making, 2020, 36(20): 28-32.
3 Wang M L, Liu X T, Wang X L, et al. Research on assembly tolerance allocation and quality control based on fuzzy reliability[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2016, 230(20): 3755-3766.
4 曲兴田, 赵永兵, 刘海忠, 等. 串并混联机床几何误差建模与实验[J]. 吉林大学学报: 工学版, 2017, 47(1): 137-144.
Qu Xing-tian, Zhao Yong-bing, Liu Hai-zhong, et al. Modeling and experiments on geometric errors of series-parallel hybrid machine tools[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 137-144.
5 Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1978, 1(1): 3-28.
6 Anotaipaiboon W, Makhanov S S. Minimization of the kinematics error for five-axis machining[J]. Computer-Aided Design, 2011, 43(12): 1740-1757.
7 周大勇, 董文龙, 邓海燕. 普通机床加工误差分析[J]. 设备管理与维修, 2020(19): 136-137.
Zhou Da-yong, Dong Wen-long, Deng Hai-yan. Analysis of machining errors in general machine tools[J]. Equipment Management and Maintenance, 2020(19): 136-137.
8 Yang X F, Liu Y S, Gao Y. An active learning kriging model for hybrid reliability analysis with both random and interval variables[J]. Structural and Multidisciplinary Optimization, 2015, 51(5): 1003-1016.
9 Liu C, Xiang C T, Lu C W. Dynamic and static error identification and separation method for three-axis CNC machine tools based on feature workpiece cutting[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(5/6): 2227-2238.
10 Fu C M, Liu Y X, Xiao Z. Interval differential evolution with dimension reduction interval analysis method for uncertain optimization problems[J]. Applied Mathematical Modelling, 2019, 69: 441-452.
11 何霞, 刘卫锋, 常娟. 区间值模糊集上的区间值模糊关系[J]. 郑州师范教育, 2018, 7(4): 1-6.
He Xia, Liu Wei-feng, Chang Juan. Interval-valued fuzzy relations on interval-valued fuzzy sets[J]. Zhengzhou Teacher Education, 2018, 7(4): 1-6.
12 阮传扬, 韩莉娜. 考虑区间元素个数的区间犹豫模糊决策方法[J]. 计算机科学与探索, 2018, 12(9): 1513-1521.
Ruan Chuan-yang, Han Li-na. An interval hesitation fuzzy decision method considering the number of interval elements[J]. Computer Science and Exploration, 2018, 12(9): 1513-1521.
13 Zhang Y. Review of theory and technology of mechanical reliability for dynamic and gradual systems[J]. Journal of Mechanical Engineering, 2013, 49(20): 101.
14 Du X P, Sudjianto A, Huang B Q. Reliability-based design with the mixture of random and interval variables[J]. Journal of Mechanical Design, 2015, 127 (6): 1068-1076.
15 杨兆军, 王继利, 李国发. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报: 工学版, 2014, 44(3): 686-691.
Yang Zhao-jun, Wang Ji-li, Li Guo-fa. A fuzzy hierarchical analysis prediction method for the reliability growth of stamping machine tools[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(3): 686-691.
16 宋述稳. 根据位置度公差选择加工机床的方法[J]. 机械制造, 1995(11): 37-38.
Cheng Shu-wen. The method of selecting processing machine tools according to the position tolerance[J]. Machinery Manufacturing, 1995(11): 37-38.
17 孙晓玲. 基于区间值相似度的加权模糊推理[J]. 淮阴师范学院学报: 自然科学版, 2016, 15(3): 193-198.
Sun Xiao-ling. Weighted fuzzy inference based on interval-valued similarity[J]. Journal of Huaiyin Normal College(Natural Science Edition), 2016, 15(3): 193-198.
18 Qiao X Z, Qiu Y Y. A non-probabilistic model for structural reliability analysis[J]. Applied Mechanics and Materials, 2014, 496-500: 2737-2741.
19 孙海龙, 姚卫星. 结构区间可靠性分析的可能度法[J]. 中国机械工程, 2008(12): 100-105.
Sun Hai-long, Yao Wei-xing. Possibility degree method for structural interval reliability analysis[J]. China Mechanical Engineering, 2008(12): 100-105.
[1] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[2] Li-qiang JIN, Duan-yang TIAN, Hao TIAN, Meng-meng LIU. Brake force assistant technology for vehicle electronicstability control system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[3] HU Dong-hai, HE Ren, GU Xiao-dan. Optimal energy-saving design of structural parameter of eddy current retarder [J]. 吉林大学学报(工学版), 2014, 44(5): 1253-1257.
[4] Dong Wei, Yu Xiu-min, Zhang You-kun . CVT control strategies for engine brake on long downhill of vehicle [J]. 吉林大学学报(工学版), 2006, 36(05): 650-0653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!