Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 400-408.doi: 10.13229/j.cnki.jdxbgxb20211197

Previous Articles    

Reliability analysis of numerical control machine tools based on analytic network process and date enevalopment analys

Li-juan YU1,2,3(),Ang LIU1,2,3,Zhao-jun YANG1,2,Hai-long TIAN1,2,3(),Chuan-hai CHEN1,2,3,Jing-wen GAO2   

  1. 1.Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    3.Chongqing Research Institute,Jilin University,Chongqing 400037,China
  • Received:2021-11-15 Online:2022-02-01 Published:2022-02-17
  • Contact: Hai-long TIAN E-mail:tallyu@163.com;tianhl.jlu@foxmail.com

Abstract:

In view of the existing numerical control machine tool FMECA analysis factors are few, the interaction between factors is not considered and the weight of each factor is the same, the analytic network process(ANP ) and data envelopment analysis(OCD ) model are applied to the study of FMECA in the use stage of numerical control machine tool, with the score of each factor as the input index. Taking economic loss as output index, the OCD model is established and the efficiency value of each failure mode is obtained. Then a new method is proposed to calculate the risk priority number and the damage degree of failure mode is ranked according to RPN. Taking a numerical control machine tool as an example, the influence and effect of the failure modes are analyzed by using the proposed method, and the effectiveness of the proposed method is verified.

Key words: CNC machine tools, the analytic network process, date envelopment analysis, failure mode effects and criticality analysis

CLC Number: 

  • TH17

Fig.1

Risk factor index structure chart"

Table 1

Classification table of frequency of failure"

发生频率类别描述故障频率参考值评分
Ⅰ类经常发生>20%10
Ⅱ类有时发生10~20%7、8、9
Ⅲ类偶尔发生1~10%4、5、6
Ⅳ类较少发生0.1~1%2、3
Ⅴ类极少发生<0.1%1

Table 2

Classification table of hazard levels of faults to machine tools"

机床危害类别描述评分
Ⅰ类系统丧失规定功能,系统严重受损8、9、10
Ⅱ类系统规定功能减退,性能部分丧失4、5、6、7
Ⅲ类系统性能尚可接受1、2、3

Table 3

Classification table of hazard level of fault to person"

人身危害类别描述评分
Ⅰ类重大安全事故,可能引起人员伤亡8、9、10
Ⅱ类一般安全事故,可能引起人员伤亡4、5、6、7
Ⅲ类很小事故,基本不会引起人员伤亡1、2、3

Table 4

Classification table of structural complexity of fault location"

故障部位结构复杂性类别描述评分
Ⅰ类非常复杂9、10
Ⅱ类复杂6、7、8
Ⅲ类一般3、4、5
Ⅴ类简单1、2

Table 5

Fault detection cost classification table"

检测成本类别描述评分
Ⅰ类

几乎无法检测,若检测必须将部件

破坏或采用先进设备(非常高)

9、10
Ⅱ类

小机会检测出,仍需要低成本的

检测设备(高)

6、7、8
Ⅲ类当场检测出,不需要设备 (一般)3、4、5
Ⅳ类目视即可检测 (低)2
Ⅴ类可自动报警(很低)1

Table 6

Technical requirement classification table for maintainability"

技术要求类别描述评分
Ⅰ类需要修复要求非常高9、10
Ⅱ类需要修复技术要求比较高8、7、6
Ⅲ类需要修复技术要求一般5、4、3
Ⅳ类需要修复技术要求低2
Ⅴ类需要修复技术要求很低1

Table 7

Maintenance cost classification table of maintainability"

维护成本类别描述评分
Ⅰ类维护成本非常高10
Ⅱ类维护成本比较高7、8、9
Ⅲ类维护成本一般4、5、6
Ⅳ类维护成本低2、3
Ⅴ类维护成本很低1

Fig.2

Structure diagram of typical network analytic hierarchy process"

Table 8

Index dominance interpretation table"

优势度优势度释义
1同样重要
3稍微重要
5明显重要
7非常重要
9极度重要
2、4、6、8重要程度介于上述标准之间
上述数值的倒数

i拥有上述不为0的值之一,与j比较时,

j的值与其互为倒数

Table 9

Random consistency index table"

nR.I.
10.00
20.00
30.52
40.89
51.12
61.26
71.36
81.41

Table 10

Main failure of CNC lathe"

序号系统故障模式主要故障原因
FM1主传动系统几何精度超标主轴中心线与导轨不平行,螺栓松动
FM2主传动系统机械零部件损坏轴承研伤损坏
FM3主传动系统预紧机构松动轴承预紧力小,松动,间隙过大
FM4主传动系统继电器损坏压力继电器故障,变频器故障
FM5刀架编码器损坏刀架编码器损坏,24 V电压没加上,锁紧开关位置变动
FM6刀架刀架失调电机断路,刀架卡死,液压换向阀卡死
FM7刀架继电器损坏刀架电压为24 V的线路断线,继电器输出接口被击穿
FM8CNC系统线路电缆断路光缆断线,控制板故障
FM9CNC系统线路板损坏系统故障,电源板故障
FM10CNC系统电源故障显示器损坏,24 V电源故障
FM11进给系统松动联轴节松动,齿轮比设置错误,镶条贴合不好
FM12进给系统驱动器损坏伺服模块故障
FM13进给系统电机损坏伺服电机故障,抱闸
FM14电气系统电子器件损坏传感器故障
FM15电气系统线路接触不良电源接触不良,变压器击穿
FM16液压系统液、气、油渗漏调压阀阀芯漏油
FM17液压系统液压油压力失调密封圈损坏,电磁阀故障,漏油
FM18排屑系统运动部件卡死链板卡死,离合器故障
FM19润滑系统润滑不良/无润滑润滑站电机故障,润滑计量件故障

Table 11

Failure mode expert score"

序号O1S1S2D1D2M1M2
FM18738668
FM26828856
FM37335433
FM45562234
FM56552224
FM67645443
FM76654634
FM84426522
FM93724635
FM103614635
FM117435644
FM125514554
FM134614246
FM146422332
FM154752334
FM167221222
FM177878877
FM184163232
FM198123131

Fig.3

Network analysis model of index weight"

Table 12

Judgment matrix about occurrence degree O"

OSDM权重
C.R.=0<0.1,判断矩阵具有较好的一致性
S1280.615 39
D1/2140.307 69
M1/81/410.076 92

Table 13

Direct economic loss grading table"

直接经济损失描述评分
Ⅰ类非常高(机床价格的5%以上)10、9
Ⅱ类比较高(机床价格的3~5%)8、7、6
Ⅲ类一般(机床价格的1~3%)5、4、3
Ⅳ类低(机床价格的1‰~1%)2
Ⅴ类很低(机床价格的1‰以下)1

Table 14

Indirect economic loss grading table"

直接经济损失描述评分
Ⅰ类非常高(机床价格的10%以上)10、9
Ⅱ类比较高(机床价格的5~10%)8、7、6
Ⅲ类一般(机床价格的1~5%)5、4、3
Ⅳ类低(机床价格的1‰~1%)2
Ⅴ类很低(机床价格的1‰以下)1

Table 15

Output index evaluation table"

序号E1E2序号E1E2序号E1E2
FM123FM817FM1522
FM257FM915FM1611
FM311FM1025FM1713
FM415FM1123FM1811
FM525FM1235FM1912
FM622FM1367
FM712FM1411

Fig.4

Evaluation index integration diagram"

Table 16

Failure mode assessment result table"

FM1FM2FM3FM4FM5FM6FM7FM8FM9FM10FM11FM12FM13FM14FM15FM16FM17FM18FM19
O11-0.000.001.670.000.001.340.000.000.000.002.890.000.000.000.000.001.000.000.00
S21-0.000.00-1.350.000.000.440.440.000.000.00-1.730.000.000.003.430.000.000.000.00
S22-0.000.001.000.000.00-0.330.560.000.000.001.280.000.000.001.160.005.000.000.00
D31-0.000.001.790.000.002.110.870.000.000.001.170.000.000.00-1.380.000.000.000.00
S22-0.000.000.330.000.000.882.870.000.000.001.950.000.000.000.530.000.000.000.00
M41-0.000.000.000.000.001.560.440.000.000.000.720.000.000.00-0.270.002.000.000.00
M42-0.000.000.000.000.00-1.33-0.380.000.000.00-0.620.000.000.000.230.001.000.000.00
φ1.001.003.061.001.001.942.651.001.001.001.661.001.001.001.431.003.001.001.00
η1.001.000.331.001.000.510.381.001.001.000.601.001.001.000.701.000.331.001.00

Table 17

RPN sorting table for each failure mode"

序号改进后RPN值改进后排序
FM16.376
FM25.678
FM311.473
FM44.169
FM53.9512
FM68.914
FM712.612
FM83.0717
FM94.1510
FM103.8314
FM117.545
FM124.0211
FM133.9013
FM143.1415
FM156.017
FM162.6918
FM1722.071
FM183.1016
FM192.6519
1 杨兆军, 陈传海, 陈菲, 等. 数控机床可靠性技术的研究进展[J].机械工程学报, 2013, 49(20): 130-139.
Yang Zhao-jun, Chen Chuan-hai, Chen Fei, et al. Research progress on reliability technology of CNC machine tools[J]. Journal of Mechanical Engineering, 2013, 49(20): 130-139.
2 乔巍巍, 贾亚洲, 张海波, 等. 数控系统故障分析及可靠性提高措施[J]. 吉林大学学报: 工学版, 2006, 36(): 69-72.
Qiao Wei-wei, Jia Ya-zhou, Zhang Hai-bo, et al. Numerical control system fault analysis and reliability improvement measure[J].Journal of Jilin University(Engineering and Technology Edition), 2006, 36(Sup.2): 69-72.
3 陈颖, 康锐. FMECA技术及其应用[M]. 2版. 北京: 国防工业出版社, 2014.
4 Renjith V R,Jose K M, Kumar P H, et al. Fuzzy FMECA(failure mode effect and criticality analysis) of LNG storage facility[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 537-547.
5 Liu Yong-kui, Kong Zhao-jun, Zhang Qing. Failure modes and effects analysis(FMEA) for the security of the supply chain system of the gas station in China[J]. Ecotoxicology and Environmental Safety, 2018, 164: 325-330.
6 Gajanand G, Rajesh P M.Comparative analysis of traditional and fuzzy FMECA approach for criticality analysis of conventional lathe machine[J]. International Journal of System Assurance Engineering and Management, 2020, 11(2): 379-386.
7 章浩然, 洪荣晶, 陈复兴, 等. 基于FMECA和模糊评判的数控机床可靠性分析方法[J]. 制造技术与机床, 2020(11): 125-129.
Zhang Hao-ran, Hong Rong-jing, Chen Fu-xing, et al.Reliability analysis method of CNC machine tools on FMECA and fuzzy evaluation[J]. Manufacturing Technology & Machine Tool, 2020(11): 125-129.
8 刘泽锐, 王红军, 李颖, 等. 基于数控机床FMECA与改进RPN的系统危害性评价方法[J]. 制造技术与机床, 2020(11): 40-45.
Liu Ze-rui, Wang Hong-jun, Li Ying, et al. System hazard evaluation method based on numerical control machine tool FMECA and improved RPN[J]. Manufacturing Technology & Machine Tool, 2020(11): 40-45.
9 申桂香, 贾亚洲, 马健, 等. CNC机床故障分析及其可靠性[J]. 中国机械工程, 1996(6): 67-69, 124.
Shen Gui-xiang, Jia Ya-zhou, Ma Jian, et al. Failure analysis and reliability of CNC machine tools[J]. China Mechanical Engineering, 1996(6): 67-69, 124.
10 牛东晓, 李金超. 电力能源综合评价理论[M]. 北京: 中国电力出版社, 2014.
11 唐小丽, 冯俊文. ANP原理及其运用展望[J]. 统计与决策, 2006(12): 138-140.
Tang Xiao-li, Feng Jun-wen. ANP principle and its application prospects[J]. Statistics and Decision, 2006(12): 138-140.
12 王恒田, 杨晓龙. 基于网络层次分析法的平价上网光伏电站站址优选的决策研究[J]. 太阳能, 2020(12): 24-32.
Wang Heng-tian, Yang Xiao-long. Decision-making research on site selection of affordable photovoltaic power station based on network analytic hierarchy process [J]. Solar Energy, 2020(12): 24-32.
13 孙铭忆. 层次分析法(AHP)与网络层次分析法(ANP)的比较[J]. 中外企业家, 2014(10): 67-68.
Sun Ming-Yi. Comparison between AHP and network analytic hierarchy process(ANP)[J]. Chinese and Foreign Entrepreneurs, 2014(10): 67-68.
14 李学平. 用层次分析法求指标权重的标度方法的探讨[J]. 北京邮电大学学报: 社会科学版, 2001(1): 25-27.
Li Xue-ping. Discussion on the scaling method of using analytic hierarchy process to obtain index weight[J]. Journal of Beijing University of Posts and Telecommunications(Social Science Edition), 2001(1): 25-27.
15 陈传海, 杨兆军, 陈菲, 等. 基于模糊数据包络分析的数控机床故障模式分析[J]. 吉林大学学报: 工学版, 2013, 43(6): 1523-1528.
Chen Chuan-hai, Yang Zhao-jun, Chen Fei, et al.Analysis of failure modes of CNC machine tools based on fuzzy data envelopment analysis[J].Journal of Jilin University(Engineering and Technology Edition), 2013, 43(6): 1523-1528.
16 Kong W H, Fu T T. Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value added performance indicators [J]. Omega, 2012, 40(5): 541-549.
17 Chen T Y. Measuring firm performance with DEA and prior information in Taiwan's banks[J]. Applied Economics Letters, 2002, 9(3): 201-204.
18 Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092.
19 马占新. 数据包络分析方法的研究进展[J]. 系统工程与电子技术, 2002, 24(3): 42-46.
Ma Zhan-xin. Research progress of data envelopment analysis methods[J]. System Engineering and Electronic Technology, 2002, 24(3): 42-46.
20 曹莉, 马占新, 马生昀. 复杂多层次指标合成技术及效率分析[J]. 运筹学学报, 2020, 24(4): 39-50.
Cao Li, Ma Zhan-xin, Ma Sheng-yun. Complex multi-level index synthesis technology and efficiency analysis[J]. Journal of Operations Research, 2020, 24(4): 39-50.
[1] Chuan-hai CHEN,Cheng-gong WANG,Zhao-jun YANG,Zhi-feng LIU,Hai-long TIAN. Research status and development trend analysis of reliability modeling of CNC machine tools [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 253-266.
[2] XU Bin-bin, YANG Zhao-jun, CHEN Fei, HAO Qing-bo, ZHAO Hong-wei, LI Guo-fa. Reliability model of CNC machine tools based on non-homogenous poisson process [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 210-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!