吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1404-1409.doi: 10.7964/jdxbgxb201405029

Previous Articles     Next Articles

Energy-saving data transmission scheme for event-driven disaster monitoring sensor networks

HU Qing-song1,2, WU Li-xin1,2, ZHANG Shen1, DING En-jie1   

  1. 1.IoT /Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221008,China;
    2.School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008,China
  • Received:2013-02-20 Online:2014-09-01 Published:2014-09-01

Abstract: An energy-efficient data transmission schemed, named C2MIMO, was proposed for disaster monitoring sensor networks. Because the scheme is based on clustering and cooperative Multiple-Input Multiple-Output (MIMO), the monitor and cluster are constructed first. During this process, one primary header and some slave headers are selected as cooperative sending and receiving nodes. Then, the network delivers the gathered data to sink cluster-by-cluster. Through the cooperative MIMO energy consumption model and simulation results, the C2MIMO scheme shows its adaption to long distance transmission and bad channel status.

Key words: cooperative MIMO, event driven, disaster monitoring sensor networks, clustering, energy saving

CLC Number: 

  • TP393
[1] 冯文江,赵伟,王东. 分簇 ad hoc 网络协同 MIMO 传输策略[J]. 通信学报,2012,33(3): 1-9.Feng Wen-jiang,Zhao Wei,Wang Dong. Cooperative MIMO transmission scheme for clustered ad hoc networks[J]. Journal on Communications,2012, 33(3): 1-9.
[2] 杨栋. 虚拟MIMO系统合作接力机制研究[D]: 成都:电子科技大学通信与信息工程学院, 2009.Yang Dong. Research on cooperative relay of virtual MIMO system[D]. Chengdu:School of Communication & Information Engineering,University of Electronic Sceience and Technology of China, 2009.
[3] Sundaresan K, Sivakumar R. Routing in ad-hoc networks with MIMO links[C]∥13th IEEE International Conference on Network Protocols,Boston,MA,USA, 2005.
[4] Bravos G, Kanatas A G. Energy consumption and trade-offs on wireless sensor networks[C]∥IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications,Berlin,2005.
[5] Bravos G, Kanatas A G. Energy efficiency comparison of MIMO-based and multihop sensor networks[J]. EURASIP Journal on Wireless Communications and Networking,Special Section,2008(2):1-13.
[6] Siam M Z, Krunz M, Younis O. Energy-efficient clustering/routing for cooperative MIMO operation in sensor networks[C]∥IEEE INFOCOM 2009,Rio de Janeiro,Brazil,2009.
[7] 胡青松,张申,陈艳,等. 一种基于voronoi 图的能量均衡分簇路由协议[J]. 小型微型计算机系统,2012,33(3): 457-461.Hu Qing-song,Zhang Shen,Chen Yan,et al. An energy balanced clustering routing based on voronoi-graph[J]. Journal of Chinese Computer Systems,2012, 33(3): 457-461.
[8] Cui Shu-guang, Goldsmith Andrea J, Bahai Ahmad. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2004, 22(6): 1089-1098.
[9] Hussain S, Azim A, Park J H. Energy efficient virtual MIMO communication for wireless sensor networks[J]. Telecommunication Systems, 2009, 42(1): 139-149.
[10] Gao Q, Zuo Y, Zhang J, et al. Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation[J]. IEEE Transactions on Vehicular Technology, 2010, 59(8): 3956-3965.
[1] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[2] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[3] ZHANG Man, SHI Shu-ming. Analysis of state transition characteristics for typical vehicle driving cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015.
[4] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] DENG Jian-xun, XIONG Zhong-yang, DENG Xin. Improved DNALA algorithm based on spectral clustering matrix [J]. 吉林大学学报(工学版), 2018, 48(3): 903-908.
[6] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[7] HOU Xian-yao, CHEN Xue-wu. Use of public transit information market segmentation based onattitudinal factors [J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[8] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[9] LI Xian-sheng, MENG Fan-song, ZHENG Xuan-lian, REN Yuan-yuan, YAN Jia-hui. Driver's visual characteristics based on stress response [J]. 吉林大学学报(工学版), 2017, 47(5): 1403-1410.
[10] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[11] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[12] WEN De-sheng, CHEN Fan, ZHEN Xin-shuai, ZHOU Cong, WANG Jing, SHANG Xu-dong. Application of pressure control loop with double-stator pumps and motors [J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[13] HUANG Lan, LI Yu, WANG Gui-shen, WANG Yan. Community detection method based on vertex distance and clustering of density peaks [J]. 吉林大学学报(工学版), 2016, 46(6): 2042-2051.
[14] WANG Gui-shen, HUANG Lan, WANG Yan, SONG Li-ming, OU Ge. Link clustering method based on maxima and minima non-neighbor link similarity [J]. 吉林大学学报(工学版), 2016, 46(5): 1616-1621.
[15] QIN Da-tong, ZHAN Sen, QI Zheng-gang, CHEN Shu-jiang. Driving cycle construction using K-means clustering method [J]. 吉林大学学报(工学版), 2016, 46(2): 383-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!