吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1195-1199.doi: 10.13229/j.cnki.jdxbgxb201504025

Previous Articles     Next Articles

Experiment and simulation on quenching interface heat transfer coefficient of high-strength boron steel

ZHANG Zhi-qiang1, JIA Xiao-fei1, ZHAO Yong2, LI Xiang-ji2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022,China;
    2.Roll Forging Institute, Jilin University, Changchun 130022, China
  • Received:2014-02-26 Online:2015-07-01 Published:2015-07-01

Abstract: Interface Heat Transfer Coefficient (IHSC) between blank and tools is the key factor to obtain the temperature field, stress and strain fields and microstructure distribution of boron steel hop stamping parts. By measuring the temperature changes of the blank and die in the process of quenching combined with finite element analysis and the inverse heat transfer model, the relationship between the interface heat transfer coefficient and temperature was obtained. The results show that IHSC ranges from 1970 W/(m2·K) to 3960 W/(m2·K) when the temperature of the blank decreases from 770 ℃ to 200 ℃. IHTC decreases as the temperature of the blank decreases. However, the release of latent heat during the transformation from austenite to martensite results in the discontinuity of IHTC at 420 ℃. The distribution of IHTC is almost the same under different environmental temperatures and quenching mediums. The IHTC values of the die surface temperature as quenching medium are higher than those at the location 1 mm below the surface of the die.

Key words: metal material, boron steel, hot stamping, interface heat transfer coefficient, inverse heat transfer model

CLC Number: 

  • TG156.3
[1] Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design[J]. SAE Int J Mater Manuf, 2009,1(1):411-426.
[2] Åkerström P, Oldenburg M. Austenite decomposition during press hardening of a boron steel-computer simulation and test[J]. Journal of Materials Processing Technology, 2006, 174:399-406.
[3] Tekkaya A E, Karbasian H, Homberg W, et al. Thermo-mechanical coupled simulation of hot stamping components for process design[J]. Computer Aided Engineering, 2007, 1(1):85-89.
[4] Lee M G, Kim S J , Han H N, et al. Application of hot press forming process to manufacture an automotive part and its finite element analysis considering phase transformation plasticity[J]. International Journal of Mechanical Sciences, 2009, 51(11-12):888-898.
[5] 张志强. 高强度钢板热冲压技术及数值模拟[J]. 热加工工艺,2010(11):103-105. Zhang Zhi-qiang. Hot stamping of high strength steel sheet and its numerical simulation[J]. Hot Working Technology, 2010(11):103-105.
[6] 张志强. B柱热冲压数值分析研究[J]. 锻压技术,2010(3):58-60. Zhang Zhi-qiang. Numerical analysis of B pillar hot stamping[J]. Forging and Stamping Technology, 2010(3):58-60.
[7] Zhang Zhi-qing, Ye Zhong-chao, Zhang Yi-sheng, et al. Numerical analysis on hot stamping of B pillar reinforcement of automobiles[J]. Advanced Materials Research, 2010 (97-101):282-285.
[8] Tondini F, Bosetti P, Bruschi S. An experimental-numerical procedure to identify heat transfer coefficient in hot stamping processes[C]∥Proceedings of Euromech, Lisboa, 2009: 1-7.
[9] Abdulhay B, Bourouga B, Dessain C, et al. Experimental study of heat transfer in hot stamping process[J]. International Journal of Material Forming, 2009, 2(Suppl.1):255-257.
[10] Merklein M , Lechler J, Stoehr T. Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping[J]. International Journal of Material Forming, 2009, 2(Suppl.):259-262.
[11] 李辉平, 贺连芳, 赵国群. 硼钢B1500HS界面传热系数与压力关系的研究[J]. 机械工程学报, 2013(16):77-83. Li Hui-ping, He Lian-fang, Zhao Guo-qun. Research on the surface heat transfer coefficient depending on surface pressure of boron steel B1500HS[J]. Journal of Mechanical Engineering, 2013(16): 77-83.
[12] 顾剑锋,潘建生,胡明娟. 淬火冷却过程中表面综合换热系数的反传热分析[J]. 上海交通大学学报, 1998, 32(2):19-22. Gu Jian-feng, Pan Jian-sheng, Hu Ming-juan. Inverse heat conduction analysis of synthetical surface hear transfer coefficient during quenching process[J]. Journal of Shanghai Jiaotong University,1998, 32(2):19-22.
[13] 刘庄,吴肇基,吴景之,等. 热处理过程的数值模拟[M]. 北京:科学出版社,1996.
[1] ZHANG Zhi-qiang, LIU Cong-hao, HE Dong-ye, LI Xiang-ji, LI Ji-xuan. Effect of hot stamping process of boron steel on shape precision based on performance gradient distribution [J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[2] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[3] HE Bin, LI Xian-da, YING Liang, HU Ping, ZHANG Xiang-kui. Optimal design of hot stamping tools with conformal cooling channels [J]. 吉林大学学报(工学版), 2016, 46(6): 1974-1980.
[4] GU Zheng-wei, LYU Meng-meng, ZHAO Li-hui, XU Hong, LI Xin, LU Guan-han. Optimization of quenching parameters of ultrahigh strength steel in hot stamping process [J]. 吉林大学学报(工学版), 2016, 46(3): 853-858.
[5] ZHANG Zhi-qiang, JIA Xiao-fei, YUAN Qiu-ju. Springback analysis of trip high strength steel based on Yoshida-Uemori model [J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[6] GU Zheng-wei, LU Guan-han, LI Xin, FANG Huan-huan, XU Hong. Numerical analysis and optimization of cooling system of anti-collision beam hot stamping die [J]. 吉林大学学报(工学版), 2015, 45(4): 1189-1194.
[7] YING Liang, DAI Ming-hua, HU Ping, FAN Zheng-shuai, SHEN Guo-zhe, SHI Dong-yong. Strength and hardness prediction based on cooling rate for hot forming high strength steel [J]. 吉林大学学报(工学版), 2014, 44(6): 1716-1722.
[8] LI Xin,WANG Gang,LU Guan-han,GU Zheng-wei,XU Hong. Weldability of 22MnB5 after hot stamping by TIG welding processes [J]. 吉林大学学报(工学版), 2014, 44(3): 708-711.
[9] ZHUANG Wei-min, CAO De-chuang, YE Hui. Prediction of FLD for AA7075 under hot stamping based on continuum damage mechanics [J]. 吉林大学学报(工学版), 2014, 44(2): 409-414.
[10] CHANG Ying, LI Ye, YING Liang, LU Jin-dong, TANG Xing-hui, GUO Wei. Effect of oxidation behavior on heat transfer dynamics performance of hot stamping steel [J]. 吉林大学学报(工学版), 2013, 43(06): 1551-1557.
[11] LI Zhi-jie, PENG Yan, LIU Hong-min, WANG Su-fen, XIAO Li-zi. Flow stress of medium carbon steel under warm compression deformation [J]. 吉林大学学报(工学版), 2013, 43(05): 1320-1324.
[12] ZHU Li-juan, GU Zheng-wei, LÜ Yi, XU Hong. Mechanism of hot stamping hardening for ultra-high strength steel [J]. 吉林大学学报(工学版), 2013, 43(02): 376-379.
[13] GU Zheng-wei, MENG Jia, LI Xin, XU Hong, YU Si-bin, SHEN Yong-bo. Research on optimization of the heating parameters of the ultra high strength steel's austenization in hot stamping process [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 194-197.
[14] XU Hong, SHEN Yong-bo, GU Zheng-wei, MENG Jia, YU Si-bin, LI Xin. Test on hot stamping process of automotive ultra high strength steel beams [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 111-114.
[15] GUAN Qing-feng,QIU Dong-hua,LI Yan,CHEN Kang-min,AN Chun-xiang,LONG He-sun. The formation behavior of aging precipitates on 17-4PH stainless steel [J]. 吉林大学学报(工学版), 2011, 41(03): 654-658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Song Yu-lai, Liu Yao-hui, Zhu Xian-yong, Wang Su-huan, Yu Si-rong. Effect of neodymium on microstructure and mechanical properties of AZ91 magnesium alloy[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .
[2] ZHANG Zhi-Jiang, JIN Wen-Meng, YANG Shen-Hua, DIAO Yong, ZHENG Qi-Feng. [J]. 吉林大学学报(工学版), 2009, 39(04): 959 -963 .
[3] SONG Yu-Lai, LIU Yao-Hui, SHU Xian-Yong, WANG Wen-Qin. Influence of Ho on corrosion behavior of AZ91 magnesium alloy[J]. 吉林大学学报(工学版), 2011, 41(02): 366 -0370 .
[4] XU Hong, LIU Ya-nan, YU Ting, GU Zheng-wei, LI Xiang-ji, ZHANG Zhi-qiang. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loading-unloading[J]. 吉林大学学报(工学版), 2017, 47(1): 191 -198 .