吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 2026-2033.doi: 10.13229/j.cnki.jdxbgxb201506042

Previous Articles     Next Articles

Application of PSBP method in high-density two-dimensional resistivity inversion

GAO Ming-liang, YU Sheng-bao, ZHENG Jian-bo, XU Chang, ZHANG Kun, LUAN Hui   

  1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130026, China
  • Received:2014-08-28 Online:2015-11-01 Published:2015-11-01

Abstract: In nonlinear inversion, neural network algorithm has the shortcomings of easy to fall into local minimum, slow convergence and poor inversion accuracy. To overcome these shortcomings, the Particle Swarm Optimization (PSO) is combined with Back Propagation (BP) neural network to achieve inversion (referred as PSBP). The effectiveness of the PSBP is verified by the classical geoelectric model. Compared with the linear inversion and BP neural network inversion methods, the proposed PSBP method has obvious advantages with good inversion result.

Key words: solid geophysics, particle swarm optimization, BP neural networks, high-density resistivity method, inversion accuracy

CLC Number: 

  • P319.3
[1] 徐海浪,吴小平. 电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584-589.
Xu Hai-lang,Wu Xiao-ping. 2D resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics,2006,49(2):584-589.
[2] Singh U K,Tiwari R K,Singh S B. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks-a case study[J]. Computers & Geosciences,2005,31(1): 99-108.
[3] 赵丁选,崔功杰,陈宁,等. 基于BP神经网络的工程车辆四参数自动变速控制[J]. 吉林大学学报:工学版,2008,38(5):1091-1094.
Zhao Ding-xuan,Cui Gong-jie,Chen Ning,et al. Engineering vehicle four parameters automatic speed control based on BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2008,38(5):1091-1094.
[4] 司建波,杨芳,郭蔚莹,等. 基于BP神经网络两阶段疾病预测模型[J]. 吉林大学学报:工学版,2013,43(Sup.1):481-484.
Si Jian-bo,Yang Fang,Guo Wei-ying,et al. The two stage of the disease prediction model based on BP neural network[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(Sup.1):481-484.
[5] 刘杰,孙吉贵,李红建,等.基于BP神经网络的气囊点火算法模型[J]. 吉林大学学报:工学版,2008,38(2):414-418.
Liu Jie,Sun Ji-gui,Li Hong-jian,et al. Airbag ignition algorithm model based on BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2008,38(2):414-418.
[6] 王家映. 地球物理资料非线性反演方法讲座(五)——人工神经网络反演法[J].工程地球物理学报,2008,5(3):255-265.
Wang Jia-ying. The lecture of nonlinear inversion methods in geophysics (the fifth)-artificial neural network inversion method[J]. Chinese Journal of Engineering Geophysics,2008,5(3):255-265.
[7] 齐龙,马旭,张小超. 基于BP神经网络的植物病害彩色图像的分割技术[J]. 吉林大学学报:工学版,2006,36(Sup.2):126-129.
Qi long,Ma Xu,Zhang Xiao-chao. Plant disease image segmentation technology based on BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2006,36(Sup.2):126-129.
[8] 冷欣,朱齐丹. 基于径向基函数神经网络动态补偿的船用增压锅炉汽包水位多模型预测控制[J]. 吉林大学学报:工学版,2011,41(5):1450-1455.
Leng xin,Zhu Qi-dan. Prediction and control of ship model with the water level of the steam drum boiler based on radial basis function neural network dynamic compensation[J].Journal of Jilin University (Engineering and Technology Edition),2011,41(5):1450-1455.
[9] Stephen J, Manoj C,Singh S B. A direct inversion seheme for deep resistivity Sounding data using artificial neural networks[J]. Journal of Earth System Science,2004,113(1):49-66.
[10] Neyamadpour A,Taib S,Abdullah W A T W. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application[J]. Computers & Geosciences,2009,35(11):2268-2274.
[11] El-Qady G,Ushijima K. Inversion of DC resistivity data using neural networks[J]. Geophysical Prospecting,2001,49(1):417-430.
[12] 张凌云,刘鸿福.ABP法在高密度电阻率法反演中的应用[J].地球物理学报,2011,54(1):227-233.
Zhang Ling-yun,Liu Hong-fu. The application of ABP method in high-density resistivity method inversion[J]. Chinese Journal of Geophysics,2011,54(1):227-233.
[13] 巩明德,赵丁选,宫文斌,等. 基于神经网络的电液伺服机械手位置控制[J]. 吉林大学学报:工学版,2002,32(3):15-19.
Kong Ming-de,Zhao Ding-xuan,Gong Wen-bin,et al. Position control of electro mechanical manipulator based on neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2002,32(3):15-19.
[14] 逢泽芳,韩红桂,乔俊飞. 基于神经网络的污水处理预测控制[J]. 吉林大学学报:工学版,2011,41(Sup.1):280-284.
Feng Ze-fang,Han Hong-gui,Qiao Jun-fei. Sewage treatment predictive control based on neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2011,41(Sup.1):280-284.
[15] 贾鹤鸣,宋文龙,郭婧. 基于神经网络滑膜的采摘机械臂控制设计[J]. 吉林大学学报:工学版,2012,42(3):709-713.
Jia He-ming,Song Wen-long,Guo Jing. The design of picking manipulator control based on neural network synovial[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(3):709-713.
[16] 吴清佳. 基于神经网络集成的旋转人脸快速检测系统[J]. 吉林大学学报:工学版,2013,43(Sup.1):424-429.
Wu Qing-jia. Rotating face fast detection system based on neural network ensemble[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(Sup.1):424-429.
[17] 王改革,郭立红,段红,等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版,2013,43(4):1064-1069.
Wang Gai-ge,Guo Li-hong,Duan Hong,et al. Target threat estimation based on the firefly algorithm optimizing BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(4):1064-1069.
[18] 侯阿临,廖庆,靳志娟,等.计算全息图的人工神经网络压缩算法[J]. 吉林大学学报:工学版,2013,43(Sup.1):21-24.
Hou A-lin,Liao Qing,Jin Zhi-juan,et al. Artificial neural network compression algorithm calculating hologram[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(Sup.1):21-24.
[19] 戴逸松,陈贺新,郭殿龙,等. 人工神经网络的研究及在计算机视觉中的应用[J]. 吉林工业大学学报,1991(2):102-110.
Dai Yi-song,Chen He-xin,Guo Dian-long,et al. The research of artificial neural network and its application in computer vision[J]. Journal of Jilin University of Technology,1991(2):102-110.
[20] 王芳荣,阚如文,王昕,等. 无人水下航行器PID神经网络解耦控制[J]. 吉林大学学报:工学版,2012,42(Sup.1):387-391.
Wang Fang-rong,Kan Ru-wen,Wang Xin,et al. PID neural network decoupling control of unmanned underwater vehicle[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(Sup.1):387-391.
[21] Kennedy J,Eberhart R. Particle swarm optimization[C]∥Proceeding of IEEE International Conference on Neural Networks, Perth,Australia,1995:1942-1948.
[22] Eberhart R,Kennedy J. A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Source,1995:39-43.
[23] Kennedy J,Eberhart R C. A discrete binary version of the particle swarm algorithm[C]∥1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL,1997:4104-4109.
[24] Clerc M. Discrete particle swarm optimization illustrated by the travelling salesman problem[EB/OL].[2014-07-03].http://www.mauriceclerc.net,2000.
[25] 张大莲,刘天佑,陈石羡,等. 粒子群算法在磁测资料井地联合反演中的应用[J].物探与化探,2009,33(5):571-575.
Zhang Da-lian,Liu Tian-you,Chen Shi-xian,et al. The application of particle swarm algorithm in joint inversion of Borehole magnetic data[J]. Geophysical and Geochemical Exploration,2009,33(5):571-575.
[26] 刘顺安,胡庆玉. PSO-BP网络算法在汽车悬架优化中的应用[J]. 吉林大学学报:工学版,2009,39(3):571-575.
Liu Shun-an,Hu Qing-yu. Application of PSO-BP network algorithm in optimization of automotive suspension[J]. Journal of Jilin University (Engineering and Technology Edition),2009,39(3):571-575.
[27] 周立军,王殿海,李卫青. 人工神经网络及粒子群优化算法在跟驰模型中的应用[J]. 吉林大学学报:工学版,2009,39(4):896-899.
Zhou Li-jun,Wang Dian-hai,Li Wei-qing. The application of artificial neural network and particle swarm optimization algorithm in the following model[J]. Journal of Jilin University (Engineering and Technology Edition),2009,39(4):896-899.
[1] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[2] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[3] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[4] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[5] JIANG Hai-yu, LIU Yu-hai, SUN Hai-lin, XU Ke-bin, BAI Tian-zeng, CHEN Zu-bin. Stratum undulation velocity model optimization algorithm for microseismic monitoring on surface [J]. 吉林大学学报(工学版), 2017, 47(6): 1969-1975.
[6] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[7] HUANG Xuan, GUO Li-hong, LI Jiang, YU Yang. Target threat assessment based on BP neural network optimized by modified particle swarm optimization [J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[8] SUN Liang, XU Hai-lang, GE Hong-wei. Novel global convergence stochastic particle swarm optimizers [J]. 吉林大学学报(工学版), 2017, 47(2): 615-623.
[9] ZHANG Jia-xu, LI Jing. Parameter identification for UniTire model based on hybrid optimization method [J]. 吉林大学学报(工学版), 2017, 47(1): 15-20.
[10] LU Ying, WANG Hui-qin, QIN Li-ke. Accurate fire location method in high and large-span space buildings [J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[11] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[12] JI Yan-jie, CHEN Xiao-shi, WANG Wei, HU Bo. Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model [J]. 吉林大学学报(工学版), 2016, 46(2): 399-405.
[13] JIANG Rong-chao, WANG Deng-feng, QIN Min, JIANG Yong-feng. Lightweight design of twist beam of rear suspension of passenger car based on fatigue life [J]. 吉林大学学报(工学版), 2016, 46(1): 35-42.
[14] YANG Zhao-jun, YANG Chuan-gui, CHEN Fei, HAO Qing-bo, ZHENG Zhi-tong, WANG Song. Parameter estimation of reliability model of machining center based on particle swarm optimization and support vector regression [J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[15] SHAO Peng, WU Zhi-jian, ZHOU Xuan-yu. Particle swarm optimization algorithm based on opposite learning for linear phase low-pass FIR filter optimization [J]. 吉林大学学报(工学版), 2015, 45(3): 907-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!