吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 686-692.doi: 10.13229/j.cnki.jdxbgxb201702046

Previous Articles    

Non-magnetism heating system for atomic gas cell used in SERF atomic magnetometer

WANG Yan-zhang1, 2, QIN Jia-nan1, 2, ZHANG Xue1, 2, CHEN Chen1, 2   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061,China;
    2.Key Laboratory for Geophysical Exploration Equipment, Ministry of Education, Jilin University, Changchun 130061,China
  • Received:2016-02-02 Online:2017-03-20 Published:2017-03-20

Abstract: The temperature of atomic cell is an important factor affecting the measurement sensitivity of Spin-Exchange-Relaxation-Free (SERF) atomic magnetometer. A non-magnetism heating system with high-precision is designed and developed. In hardware design, the PTC heating device and Pt1000 temperature sensing circuit are adopted to complete the closed-lop control system. In software design, the three parameters P, I and D are set respectively for different temperatures. Meanwhile, the integral separated PID control method is used to eliminate overshoot, and an on-off heating mode is used to satisfy the requirement for ultra-low magnetic field when the magnetometer is working. Temperature control test is performed using the developed heating system. The temperature control range is 80 ℃ to 190 ℃, the accuracy is ± 0.02 ℃, and the control procedure is 60 s. In addition, the magnetic interference is less than 0.1 nT when the heating is discontinuous, which provides the reliability to promote the performance of SERF atomic magnetometer.

Key words: electronic technology, spin-exchange-relaxation-free atomic magnetometer, non-magnetism heating system, digital PID control method, atomic gas cell

CLC Number: 

  • TP271
[1] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110.
[2] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature,2003,422(6932):596-599.
[3] 楚中毅,孙晓光,万双爱,等.无自旋交换弛豫原子磁强计的主动磁补偿[J].光学精密工程,2014,22(7):1808-1813.
Chu Zhong-yi, Sun Xiao-guang, Wan Shuang-ai, et al. Active magnetic compensation of spin-exchange-relaxation-free atomic magnetometer[J]. Optics and Precision Engineering, 2014, 22(7):1808-1813.
[4] 赵静,刘光达,安战锋,等.提高高温超导磁力仪动态范围的补偿方法[J].吉林大学学报:工学版,2011,41(5):1342-1347.
Zhao Jing, Liu Guang-da, An Zhan-feng, et al. Compensation method for improving dynamic range of HTS SQUID magnetometer[J].Journal of Jilin University (Engineering and Technology Edition), 2011,41(5):1342-1347.
[5] 顾源,石荣晔,王延辉.分布式反馈激光抽运铯磁力仪灵敏度相关参数研究[J].物理学报,2014,63 (11):110701.
Gu Yuan, Shi Rong-ye, Wang Yan-hui.Study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer[J]. Acta Physica Sinica, 2014, 63 (11):110701.
[6] Fang J C, Li R J, Duan L H. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. The Review of Scientific Instruments,2015,86(7):073116.
[7] Fang J C, Wang T, Quan W. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments,2014,85(6):063108.
[8] Ledbetter M P, Savukov I M , Acosta V M, et al.Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77: 033408.
[9] Fang J C, Wan S G, Qin J, et al.Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B, 2014, 31(3):512-516.
[10] 刘强. 全光铯原子磁力仪系统设计[D].哈尔滨:哈尔滨工程大学自动化学院,2012:63-65.
Liu Qiang. System design of all optical Cs atomic magnetometer[D]. Harbin:College of Automation, Harbin Engineering University, 2012: 63-65.
[11] 田小建,尚祖国,高博,等.980 nm高稳定度激光泵浦源控制系统[J].光学精密工程,2015,23(4):982-987.
Tian Xiao-jian, Shang Zu-guo, Gao Bo, et al. Control system for 980 nm high stability laser pump source[J]. Optics and Precision Engineering,2015, 23(4):982-987.
[12] 陈晨,党敬民,黄渐强,等. 高稳定、强鲁棒性DFB激光器温度控制系统[J]. 吉林大学学报:工学版,2013,43(4): 1004-1010.
Chen Chen, Dang Jing-min, Huang Jian-qiang, et al. DFB laser temperature control system with high stability and strong robustness[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1004-1010.
[13] 秦硕,巩岩,袁文全,等.大时间热响应常数投影物镜的超高精度温度控[J].光学精密工程,2013,21(1):108-114.
Qin Shuo, Gong Yan, Yuan Wen-quan, et al. High precision temperature control for projection lens with long time thermal response constant[J]. Optics and Precision Engineering,2013, 21(1):108-114.
[14] 李金堂,樊润洁.一种无超调钝角拐点的PID温控设计[J].电子设计工程,2010,18(8):82-85.
Li Jin-tang, Fan Run-jie. A design of PID temperature control without super scale obtuse angle and inflexion[J]. Electronic Design Engineering, 2010, 18(8):82-85.
[1] Xie Xuansong, Sui Yangyi, Lin Jun. Structure and operation model of graphic language [J]. 吉林大学学报(工学版), 2006, 36(02): 219-0223.
[2] Zhou Jin, Yao Suying, Xu Jiangtao, Hu Yanxiang. Novel selective reset CMOS image sensor circuit structure [J]. 吉林大学学报(工学版), 2006, 36(02): 227-0231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!