Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 1000-1008.doi: 10.13229/j.cnki.jdxbgxb20171056

Previous Articles     Next Articles

Radar signal modulation type recognition based on AlexNet model

Li⁃min GUO(),Xin CHEN,Tao CHEN()   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2017-11-05 Online:2019-05-01 Published:2019-07-12
  • Contact: Tao CHEN E-mail:guolimin@hrbeu.edu.cn;chentao@hrbeu.edu.cn

Abstract:

Aiming at the complex electromagnetic environment in modern battlefield, the accuracy of traditional radar modulation signal recognition method based on conventional five?parameter feature is low under low signal?to?noise ratio (-6 dB). In this paper, AlexNet convolution neural network model in deep learning is used to automatically extract various feature details of image, which can replace the huge Feature Engineering designed by hand to realize signal recognition under low signal?to?noise ratio. Firstly, the time?frequency image of radar modulation signal is generated by smoothing pseudo?Wigner?Ville time?frequency analysis in time?frequency domain; then, the time?frequency image is preprocessed by median and mean filtering combined with denoising; finally, the AlexNet model is trained by using image processor GPU under the deep learning framework Tensor flow, and CW, LFM, E are trained. Seven kinds of radar signals, QFM, DLFM, BFSK, BPSK and QPSK, are automatically extracted and selected to realize automatic recognition of radar signals. The simulation results show that the overall recognition rate of the other six radar signals, except QPSK signal, is more than 90% at the signal?to?noise ratio -6 dB, which is better than that of the non?deep learning and LeNet5 convolution neural network, thus verifying the validity of the method for radar signal recognition at low signal?to?noise ratio.

Key words: signal and information processing, smooth pseudo Wigner?Ville, midial filter, mean filter, deep learning

CLC Number: 

  • TN971.1

Fig.1

7 kinds of radar signal Time-frequency image"

Fig.2

The preprocessing of time?frequency images"

Table 1

The parmeters of convolutions and poolings in AlexNet"

层数 输入尺寸 卷积核 卷池尺寸 卷池步长 输出特征
1 227×227×3 96 11/3 4/2 27×27×96
2 27×27×256 256 5/3 1/2 13×13×256
3 13×13×384 384 3/0 1/1 13×13×384
4 13×13×384 384 3/0 1/1 13×13*×84
5 13×13×385 256 3/3 1/2 6×6×256

Fig. 3

Structure of AlexNet model"

Table 2

Simulation of signal parameters"

信号类型 载频/MHz 采样频率/MHz 采样点N 调频斜率K
CW 0~30 200 512 -
LFM 10~50 200 512 2~3B/T
EQFM 10~40 200 512 -
DLFM 10~30 200 512 2~3B/T
BFSK

fc1=(10~30)

fc2=(10~40)

200 512 -
BPSK 20~30 200 512 -
QPSK 20~30 200 512 -

Table 3

Training time in different platform"

平台 信噪比 (dB) /时间(s)
-10 -8 -6 -4 -2 0
GPU 1730 1680 1645 1654 1623 1400
CPU 14900 4680 14780 14650 14300 14300

Table 4

Identify rate of comparison of A method with other methods in different signal to noise ratio"

信号类型 信噪比dB /识别率%
-10 -8 -6 -4 -2
CW

A

D

97.0 100 100 100 100

0 0 22 83 100

LFM

A

D

E

74.5 81.5 93.5 95.5 97.5

0 0 0 0 2

0 50 58 79 97

PSK

A

D

E

89.0 91 93 93.5 94

0 0 0 0 0

0 90 91 92 100

QPSK

A

D

58.5 75 80 83.5 99

0 0 5 10 23

BFSK

A

D

71 88 90 92 92

0 0 0 0 5

EQFM

A

D

90 100 100 100 100

0 0 0 0 3

Fig.4

Comparison of signal recognition rates under diferent SNR"

Fig.5

Confusion matrix of SNR in 0 dB"

1 张国柱, 黄可生, 姜文利,等 . 基于信号包络的辐射源细微特征提取方法[J].系统工程与电子技术,2006, 28(6):795⁃797.
Zhang Guo⁃zhu , Huang Ke⁃sheng , Jiang Wen⁃li ,et al . Emitter feature extract method based on signal envelope[J]. Systems Engineering and Electronics, 2006, 28(6): 795⁃797.
2 Misans P , Terauds M . CW doppler radar based land vehicle speed measurement algorithm using zero crossing and least squares method[C]⫽IEEE Electronics Conference, Tallinn, Estonia, 2012: 161⁃164.
3 王世强,张登福,毕笃彦,等 . 双谱二次特征在雷达信号识别中的应用[J].西安电子科技大学学报,2012,39(2): 127⁃132.
Wang Shi⁃qiang , Zhang Deng⁃fu , Bi Du⁃yan , et al . Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012,39(2): 127⁃132.
4 Teng Xiao⁃yun , Tian Peng⁃wu , Yu Hong⁃yi . Modulation classification based on spectral correlation and SVM [C]⫽IEEE International Conference on Wireless Communications, Dalian, China, 2008: 1⁃4.
5 Li Yi⁃bing , Wang Yan⁃huang , Lin Yun . Recognition of radar signals modulation based on short time fourier transform and reduced fractional Fourier transform[J]. Journal of Information & Computational Science, 2013, 10(16): 5171⁃5178.
6 Gulum T O , Erdogan A Y , Yildirim T ,et al . A parameter extraction technique for FMCW radar signals using Wigner⁃Hough⁃Radon transform[C]⫽IEEE Radar Conference, Atlanta, USA, 2012: 847⁃852.
7 Liu Yong⁃jian , Xiao Peng , Wu Hong⁃chao , et al . LPI radar signal detection based on radial integration of Choi⁃Williams time⁃frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973⁃985.
8 Krizhevsky Alex , Sutskever Ilya , Geoffrey E Hinton . ImageNet classification with deep convolutional neural networks[C]⫽International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097⁃1105.
9 Yu Nai⁃gong , Jiao Pan⁃na , Zheng Yu⁃ling . Handwritten digits recognition base on improved LeNet5[C]⫽IEEE Control & Decision Conference, Qingdao, China, 2015: 4871⁃4875.
10 Xu B Q , Sun L , Xu L , et al . Improvement of the Hilbert method via ESPRIT for detecting rotor fault in induction motors at low slip[J]. IEEE Transactions on Energy Conversion, 2013, 28(1): 225⁃233.
11 付卫红,王璐, 贾坤, 等 . 基于STFT与SPWVD的跳频参数盲估计算法[J]. 华中科技大学学报:自然科学版, 2014, 42(9): 59⁃63.
Fu Wei⁃hong , Wang Lu , Jia Kun , et al . Blind parameter estimation algorithm for frequency hopping signals based on STFT and SPWVD[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2014, 42(9): 59⁃63.
12 Roy A , Singha J , Manam L , et al . Combination of adaptive vector median filter and weighted mean filter for removal of high⁃density impulse noise from colour images[J]. Iet Image Processing, 2017, 11(6): 352⁃361.
13 Boyat A , Joshi B K . Image denoising using waveket transform and median filtering[C]⫽IEEE Nirma University International Conference on Engineering, Ahmedabad, India, 2014: 1⁃6.
14 Jiang Nan , Wang Luo . Quantum image scaling using nearest neighbor interpolation[J]. Quantum Information Processing, 2015, 14(5): 1559⁃1571.
15 Hu Y C , Su B H , Chen W L , et al . Image zooming for indexed color images based on bilinear interpolation[J]. International Journal of Multimedia and Ubiquitous Engineering, 2012, 7(2): 353⁃358.
16 Zhou D W , Shen X L , Dong W M . Image zooming using directional cubic convolution interpolation[J]. Iet Image Processing, 2012,6(6): 627⁃634.
17 Liu Bin , Zhang Xiao⁃yun , Gao Zhi⁃yong , et al . Weld defect images classification with VGG16⁃Based neural network[C]⫽International Forum on Digital TV and Wireless Multimedia Communications, Shanghai, China, 2017: 215⁃223.
18 Xavier Glorot , Antoine Bordes , Yoshua Bengio . Deep sparse rectifier neural networks[C]⫽International Conference on Artificial Intelligence & Statistics, La Palma, Canary Islands, 2012: 315⁃323.
19 Guo Qiang , Pu⁃long Nan , Zhang Xiao⁃yu ,et al . Recognition of radar emitter signals based on SVD and AF main ridge[J]. Journal of Communications and Networks, 2015, 17(5): 491⁃498.
20 Guo Qiang , Pu⁃long Nan , Wan Jian . Radar signal recognition based on ambiguity function features and cloud model similarity[C]⫽IEEE International Conference on Ultrawideband & Ultrashort Impulse Signals, Odessa, Ukraine, 2016: 128⁃134.
21 陈涛,柳立志,郭立民 . 基于 MWC 压缩采样宽带接收机的雷达信号脉内调制识别[J].电子与信息学报,2018,40(4): 867⁃874.
Chen Tao , Liu Li⁃zhi , Guo Li⁃min . Intra⁃pulse modulation recognition of radar signals based on MWC compressed sampling wideband receiver[J]. Journal of Electonic & Informatin Technology, 2018, 40(4): 867⁃874.
22 Zhang Ming , Liu Lu⁃tao , Diao Ming . LPI radar waveform recognition based on time⁃frequency distribution [J]. Sensor, 2016,16(10): 1682⁃1688.
[1] LI Jian, LI He-yu, YAO Ru-jing, WU Lin. Check of MR image edge information of lumber intervertebral disc using an improved Canny algorithm [J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709.
[2] LI Di-fei, TIAN Di, HU Xiong-wei. A method of deep learning based on distributed memory computing [J]. 吉林大学学报(工学版), 2015, 45(3): 921-925.
[3] LIU Guang-yu, PANG Yong-jie. Filter of the optical image based on alpha-trimmed mean filter and Mahalanobis distance [J]. 吉林大学学报(工学版), 2015, 45(2): 670-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhao-sheng, YU Yue, YANG Wei. Acquisition of travel time based on inductive coil detector and probe vehicle[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 168 -0171 .
[2] ZHANG Li-bin, SHAN Hong-ying, SU Jian, GE Shu-bin, CHANG Hua-lei. Quality certification evaluation system of automobile detection line[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 225 -0228 .
[3] YUAN Ye,LI Yue. Difference of degree of nonlinearity between normal and epileptic EEG signals[J]. 吉林大学学报(工学版), 2009, 39(06): 1664 -1667 .
[4] Wang Hui,Liu Shu-fen . Improved probability generation algorithm of minimal attack tree[J]. 吉林大学学报(工学版), 2007, 37(05): 1142 -1147 .
[5] LI Li-ming,CHEN Yi-yi,LI Ning,CAI Yu-chun. Seismic performance of outer-shell connection of cold-formed square tubular column and H-shaped steel beam[J]. 吉林大学学报(工学版), 2010, 40(01): 67 -0071 .
[6] Ma Shun-li,Li Ming-zhe,Sun Gang,Li Xiang-ji,Qian Zhi-rui . Numerical simulation on multipoint forming
process for tailorwelded blank
[J]. 吉林大学学报(工学版), 2008, 38(02): 334 -0339 .
[7] WANG Jia-Xue, WANG Qing-Nian, WU Dong, YANG Fang, ZHAO Zi-Liang. Power matching and simulation for plugin hybrid electric bus[J]. 吉林大学学报(工学版), 2010, 40(06): 1465 -1472 .
[8] HU Zong-jie, XIAO Chun-jiang, LI Zhi-long, NILS Haneklaus, GONG Hui-feng, WU Zhi-jun. Multi-droplet stream creating system of hydrocarbon fuel based on ultrasonic atomization technology[J]. , 2012, 42(04): 871 -876 .
[9] GUO Wei-wei, QU Zhao-wei, WANG Dian-hai. Traffic conflict discrimination model[J]. 吉林大学学报(工学版), 2011, 41(01): 35 -0040 .
[10] LIU Wei|SHI Wen-ku|GUI Long-ming|FANG De-guang|GUO Fu-xiang. Multi-objective optimization of suspension system based on vehicle ride comfort and handling stability[J]. 吉林大学学报(工学版), 2011, 41(05): 1199 -1204 .