Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1786-1794.doi: 10.13229/j.cnki.jdxbgxb20180403

Previous Articles     Next Articles

Simulation and control of pollution on automobile body surface during wading

Li XIN1(),Wei LAN2,Jiang LIU1,Qin-lin WAN1,Peng GUO1,Xing-jun HU2(),Yang XIAO2   

  1. 1. College of Automotive Engineering, Jilin University, Changchun 130022, China
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2018-04-26 Online:2019-11-01 Published:2019-11-08
  • Contact: Xing-jun HU E-mail:xinli1126@163.com;hxj@jlu.edu.cn

Abstract:

This research aims to solve the problems of vehicle soiling during wading and a modified square-back MIRA model is selected as the research object. The discrete phase model and Eulerian wall film are used to obtain the droplet trajectory and vehicle surface pollution distribution and to analyze the mechanism of surface contamination. Based on the original model, three improvements were proposed, the bottom spoiler, top tail deflector and wheel house shield, to change the structure of the flow field so as to change the droplet trajectory and reduce the surface contamination of the vehicle body. Simulation results show that the top tail deflector can better control the flow direction, thereby reducing the degree of contamination in a specific area. The bottom spoiler changes the shape of the wake and reduces the contamination of the back surface. The wheel house shield reduces the number of droplets flying out of the wheel cavity, effectively reducing body side wall contamination.

Key words: automotive aerodynamics, wheel splash and spray, discrete phase model, eulerian wall film, vehicle soiling

CLC Number: 

  • U461.1

Fig.1

MIRA model"

Fig.2

Standard square back MIRA model and modified square back MIRA model"

Fig.3

Polyhedral mesh around the body and wheel cavity"

Fig.4

Body area division"

Fig.5

Body surface pollution of modified squareback MIRA model"

Table 1

R p value of the back region of modifiedsquare back MIRA model"

区域 污染像素数 总像素数 R p
Z 1 1 092 103 504 0.011
Z 2 45 316 169 803 0.267
Z 46 408 273 307 0.170
Y 1 1 138 103 503 0.011
Y 2 42 252 169 807 0.249
Y 43 390 273 310 0.159
H 1 16 399 131 438 0.125
H 2 12 547 46 734 0.268
H 3 3 425 25 953 0.132
H 44 455 305 036 0.146

Fig.6

Holistic view of droplet trajectory"

Fig.7

Rewinding of droplet track in the wake area"

Fig.8

Droplet trajectories near the right rear wheel"

Fig.9

Streamline graph in longitudinalsymmetric plane"

Fig.10

Velocity vector graph and scalar graphin z=0 section"

Fig.11

Velocity vector graph and scalar graphin z=330 mm section"

Fig.12

Control measures"

Fig.13

Body pollution pattern after addingbottom spoiler"

Table 2

R p value of body area after addingbottom spoiler"

区域

污染

像素

总像

素数

改型R p 基础R p ΔR p ΔR p/%
Z 1 1 082 103 504 0.010 0.011 -0.000 -0.92
Z 2 35 877 169 803 0.211 0.267 -0.056 -20.83
Z 36 959 273 307 0.135 0.170 -0.035 -20.36
Y 1 1 147 103 503 0.011 0.011 0.000 0.79
Y 2 35 699 169 807 0.210 0.249 -0.039 -15.51
Y 36 846 273 310 0.135 0.159 -0.024 -15.09
H 1 6 038 131 438 0.046 0.125 -0.079 -63.18
H 2 11 092 46 734 0.237 0.268 -0.031 -11.60
H 3 1 021 25 953 0.039 0.132 -0.093 -70.19
H 26 881 305 036 0.088 0.146 -0.058 -39.53

Fig.14

Tail velocity distribution of basic typeand modified type"

Fig.15

Body pollution pattern after addingthe top tail deflector"

Table 3

R p value of the body area after addingtop tail deflector"

区域

污染

像素

总像

素数

改型R p 基础R p ΔR p ΔR p/%
Z 1 1 423 103 504 0.014 0.011 0.003 30.31
Z 2 46 784 169 803 0.276 0.267 0.009 3.24
Z 48 207 273 307 0.176 0.170 0.006 3.88
Y 1 1 255 103 503 0.012 0.011 0.001 10.28
Y 2 45 434 169 807 0.268 0.249 0.019 7.53
Y 46 689 273 310 0.171 0.159 0.012 7.60
H 1 12 052 131 438 0.092 0.125 -0.033 -26.51
H 2 12 996 46 734 0.278 0.268 0.010 3.58
H 3 4 939 25 953 0.190 0.132 0.058 44.20
H 53 592 305 036 0.176 0.146 0.030 20.55

Fig.16

Tail velocity distribution of the basic type and modified type"

Table 4

R p value of the body area afteradding the wheel house shield"

区域

污染

像素

总像

素数

改型R p 基础R p ΔR p ΔR p/%
Z 1 1 580 103 504 0.015 0.011 0.005 44.69
Z 2 22 244 169 803 0.131 0.267 -0.136 -50.91
Z 23 824 273 307 0.087 0.170 -0.083 -48.66
Y 1 1 597 103 503 0.015 0.011 0.004 40.33
Y 2 21 917 169 807 0.129 0.249 -0.120 -48.13
Y 23 514 273 310 0.086 0.159 -0.073 -45.81
H 1 25 327 131 438 0.193 0.125 0.068 54.44
H 2 16 977 46 734 0.363 0.268 0.095 35.31
H 3 4 750 25 953 0.183 0.132 0.051 38.69
H 67 975 305 036 0.223 0.146 0.077 52.91

Fig.17

Body pollution pattern after addingwheel house shields"

Fig.18

Droplet trajectory near the right front wheel of the basic type and modified type"

Table 5

Comparison of different programs"

模型 正投影/m2 阻力值/N 阻力系数
基础型 1.848 168.93 0.302
底部扰流板 1.848 178.04 0.319
顶部导流片 1.884 206.62 0.362
轮罩护板 1.858 170.02 0.302
1 Gaylard A P , Duncan B . Simulation of rear glass and body side vehicle soiling by road sprays[C]∥SAE Paper,2011-01-0173.
2 Jilesen J , Gaylard A P , Duncan B , et al . Simulation of rear and body side vehicle soiling by road sprays using transient particle tracking[C]∥SAE Paper,2013-01-1256.
3 Gaylard A P , Pitman J , Jilesen J , et al . Insights into rear surface contamination using simulation of road spray and aerodynamics[C]∥SAE Paper, 2014-01-0610.
4 Ray R , Jawahar N . Study of fluid structure interaction due to water splashing on the rear fender of motorcycles[C]∥SAE Paper,2015-01-0673.
5 Puglisevich L S , Gaylard A P , Osborne M , et al . Application of CFD to predict brake disc contamination in wet conditions[C]∥SAE Paper,2016-01-1619.
6 胡兴军 . 汽车空气动力学[M]. 北京:人民交通出版社,2014:89-92.
7 Wilfert K , Gotz H . Installation for reducing the soiling of rear lights or the like at motor vehicle bodies[P]. US Patent:359 1229, 1971-07-06.
8 Wilfert K , Gotz H . Device for reduction of soiling of motor vehicles[P]. US Patent:378 4226, 1974-01-08.
9 Gotz H . Commercial vehicle with approximately box-shaped body structure[P]. US Patent:380 7787,1974-04-30.
10 吴军 . 汽车外流场湍流模型与菱形新概念车气动特性的研究[D]. 长沙:湖南大学机械与汽车工程学院,2005.
10 Wu Jun . Research on the turbulence model of the automobile external flow field and the aerodynamic characteristics of the new rhombus concept vehicle[D]. Changsha: College of Mechanical and Automotive Engineering, Hunan University,2005.
11 王靖宇,于旭涛,胡兴军,等 . 汽车外后视镜流致振特性及其流动机理[J]. 吉林大学学报:工学版,2017,47(6):1669-1676.
11 Wang Jing-yu , Yu Xu-tao , Hu Xing-jun , et al . Fluid-induced vibration and flow mechanism of automotive external rearview mirror[J]. Journal of Jilin University(Engineering and Technology Edition),2017,47(6):1669-1676.
12 Menter F R , Kuntz M , Langtry R . Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer,2003,4(1):625-632.
13 Hagemeier T , Hartmann M , Thévenin D . Practice of vehicle soiling investigations: a review[J]. International Journal of Multiphase Flow,2011,37(8):860-875.
14 O'Rourke P J , Amsden A A . A spray/wall interaction submodel for the KIVA-3 wall film model[C]∥SAE Paper, 2000-01-0271.
15 王夫亮,傅立敏 . 侧风对轿车气动特性影响的数值模拟研究[J]. 哈尔滨工业大学学报,2006,38(8):1255-1258.
15 Wang Fu-liang , Fu Li-min . Numerical simulation of the crosswind effects on the aerodynamic performance of asedan[J]. Journal of Harbin Institute of Technology, 2006, 38(8): 1255-1258.
16 胡兴军,李腾飞,王靖宇,等 . 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报:工学版,2013,43(3):595-601.
16 Hu Xing-jun , Li Teng-fei , Wang Jing-yu , et al . Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(3):595-601.
17 Inc ANSYS . Fluent User's Guide 14.0[M]. Canonsburg: ANSYS Inc, 2011.
18 许晓平,周洲 . 多面体网格在CFD中的应用[J]. 飞行力学,2009,27(6):87-89.
18 Xu Xiao-ping , Zhou Zhou . Application of polyhedral mesh in CFD[J]. Flight Dynamics,2009,27(6):87-89.
19 杨博 . 车轮旋转条件下轿车外流场的数值计算研究[D]. 长春: 吉林大学汽车工程学院,2004.
19 Yang Bo . Numerical calculation of the external flowfield of a car under the wheel rotation[D]. Changchun:College of Automotive Engineering, Jilin University,2004.
20 Wiedemann Jochen , Wolf-HeinrichHucho . Progress in vehicle aerodynamics. IV, Numerical methods[DB/OL]. [2018-04-13]. http:∥ .
21 Littlewood R , Passmore M , Wood D . An investigation into the wake structure of square back vehicles and the effect of structure modification on resultant vehicle forces[J]. SAE International Journal of Engines,2011,4(2):2629-2637.
22 Mustafa N B A , Arumugam K , Ahmed S K , et al . Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids,2009,38(1):60-70.
[1] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[2] He Bao-qin,Wu Yun-zhu,Fu Li-min . Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon [J]. 吉林大学学报(工学版), 2008, 38(01): 7-011.
[3] Wu Yun-zhu, He Bao-qin, Fu Li-min . Influence of velocity on transient aerodynamic characteristics
of overtaking and overtaken vehicles
[J]. 吉林大学学报(工学版), 2007, 37(05): 1009-1013.
[4] Fu Li-min;Wu Yun-zhu; He Bao-qin . Aerodynamic characteristics of vehicle platoon
[J]. 吉林大学学报(工学版), 2006, 36(06): 871-0875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Qian Ying ,Zhang Ying, Yu Yong-sen, Zheng Wei,Zhang Yu-shu . Novel stress sensor of FBG on unique cantilever[J]. 吉林大学学报(工学版), 2006, 36(05): 757 -0760 .
[2] Yu Bin, Yang Zhong-zhen, Cheng Chun-tian, Zuo Zhi . Bi-level programming model for optimizing bus frequencies and its algorithm[J]. 吉林大学学报(工学版), 2006, 36(05): 664 -0668 .
[3] Zhao Hong-wei;Wu Bo-da;Liu Guo-song;Cheng Guang-ming;Yang Zhi-gang;Wang Tao . New type piezoelectric stepping rotary actuator[J]. 吉林大学学报(工学版), 2006, 36(06): 898 -902 .
[4] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[6] Zhang Xue-cheng,Zhou Chang-ming,Yu Li-juan,Han Chun-xue . Control method of weight rearrangement during loading
process of dead weight force standard machine
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 73 -77 .
[7] Huang Da,Zhao Xi-hua,Song Min-xia,Feng Ji-cai . Finite element modeling of residual stresses in the diffusion
bonding joints of TC4/ZQSn10-10
[J]. 吉林大学学报(工学版), 2007, 37(05): 1078 -1082 .
[8] Qu Xing-tian;Dong Jing-shi;Guo Jun-chen;Zhao Hong-wei;Wu Bo-da. Piezoelectric stack pump based on flexure hinge magnification[J]. 吉林大学学报(工学版), 2008, 38(03): 552 -0556 .
[9] Ma Feng-lei,Zhang Yi-min,Jiang Zhen-hai . Stochastic finite element method based on automatic differentiation[J]. 吉林大学学报(工学版), 2008, 38(增刊): 141 -0144 .
[10] Sun Zhi-xin,Yang Xi,Gong Jing . P2P-Grid reference model based on trust value[J]. 吉林大学学报(工学版), 2008, 38(01): 127 -130 .