Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 739-748.doi: 10.13229/j.cnki.jdxbgxb20191083

Previous Articles    

Optimization experiment on parameters of chopping device of forage maize harvester

Zhao XUE1,2(),Jun FU1,2(),Zhi CHEN2,3,Feng-de WANG3,Shao-ping HAN4,Lu-quan REN1,2   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
    2.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
    3.China Academy of Agricultural Mechanizaiton Sciences, Beijing 100083, China
    4.Gansu Institute of Mechanical Science Co. Ltd. , Lanzhou 730030, China
  • Received:2018-11-27 Online:2020-03-01 Published:2020-03-08
  • Contact: Jun FU E-mail:xuezhao18@mails.jlu.edu.cn;fu_jun@jlu.edu.cn

Abstract:

Chopping is one of the most important working processes of forage maize harvester. However, high energy consumption and poor mincing quality seriously restrict the effect of chopping process. The specific energy consumption and the standard grass length were directly affected by working parameters of chopping devices. Therefore, working parameters optimization test was carried out on chopping devices of forage maize harvester. The cutter head speed, feeding speed and feeding inclination angle were selected as the test factors. The better levels of the three test factors were obtained by single factor experiment. The better levels of cutter head speed ranged from 1 000 to 1 200 r/min. The better levels of feeding speed ranged from 3 to 4 m/s. The better levels of feeding inclination angle ranged from 8° to 10°. Based on single factor test results, the optimal combination of three test factors and regression model were obtained by orthogonal test. The optimal factor combination for minimum specific energy consumption was cutter head speed 1 005 r/min, feeding speed 4 m/s, feeding angle 8.4°. The optimal factor combination of maximum standard grass rate was the cutter head speed 1 200 r/min, the feeding speed 3.5 m/s, and the feeding angle 8.5°. The optimal factor combination of chopping comprehensive weighted index was the cutter head speed 1 200 r/min, the feeding speed 4 m/s, and the feeding angle 8°. The regression models were verified by field test. The relative error of regression model of specific energy consumption was 5.23%. The relative error of regression model of standard grass rate was 3.15%.The results show that the regression models were reliable.

Key words: agricultural mechanization engineering, forage maize, harvester, chopping, working parameters, optimization experiment

CLC Number: 

  • S225.5

Fig.1

Structure of chopping test bed of forage maize"

Table 1

Factors and levels of single factor test"

水平因素
切碎装置转速x1/(r·min-1)喂入速度x2/(m·s-1)喂入倾角x3/(°)
18002.05
29002.56
31 0003.07
41 1003.58
51 2004.09
64.510
711
812
913

Fig.2

Single factor test results"

Table 2

Factors and code levels of test"

水平因素

切碎装置转速

x1/(r·min-1)

喂入速度

x2/(m·s-1)

喂入倾角

x3/(°)

-11 0003.08
01 1003.59
11 2004.010

Table 3

Regression design of experiment and response values"

试验序号试验因素

切碎比能耗

y1/(kW·h·t-1)

标准草长率y2/%
x1x2x3
1-1-107.6191.76
21-108.6295.98
3-1107.3593.90
41107.9195.14
5-10-17.1991.20
610-17.9596.70
7-1017.5993.44
81018.5296.28
90-1-17.6792.36
1001-17.2194.52
110-117.8793.90
120117.4394.08
130008.0494.44
140007.9694.64
150007.9794.62
160007.9794.50
170007.9994.38

Table 4

Variance analysis of quadratic response surface regression model"

方差来源切碎比能耗y1标准草长率y2
FPFP
模型44.13<0.000 1**19.990.000 3**
x1209.70<0.000 1**129.42<0.000 1**
x269.00<0.000 1**9.000.019 9*
x338.120.000 5**5.790.047 0*
x1x27.990.025 5*12.070.010 3*
x1x31.140.321 09.620.017 3*
x2x30.0160.903 55.330.054 3
x123.940.087 50.780.406 7
x2224.120.001 7**5.850.046 2*
x3241.710.000 3**2.000.200 3
失拟项13.020.015 7*32.510.002 9**

Fig.3

Effects of interactive factors on specific energy consumption"

Fig.4

Effects of interactive factors on standard grass length ratio"

Fig.5

Validation test in field"

Fig.6

Comparison of chopping effect before and after operation parameter optimization"

Table 5

Results of validation test in field"

指标切碎比能耗最优组合标准草长率最优组合切碎作业综合指标最优组合
y1/(kW·h·t-1)

y2/

%

y1/(kW·h·t-1)

y2/

%

y1/(kW·h·t-1)

y2/

%

相对误差/%5.013.323.482.495.233.15
试验值7.5590.28.6394.107.8593.10
预测值7.1993.38.3496.507.4696.13
1 FAOSTAT. Food and agriculture organization of the united nations statistics[EB/OL]. [2018-08-10].
2 梁荣庆, 张翠英, 李青江, 等. 4QG-2型青贮收获机切碎揉搓装置的设计[J]. 农机化研究, 2018, 40(11): 99-104.
Liang Rong-qing, Zhang Cui-ying, Li Qing-jiang, et al. Design of chopping and rubbing device of 4QG-2 silage harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(11): 99-104.
3 薛飞. 自走式青饲料收获机关键部件设计与仿真[D]. 秦皇岛: 河北科技师范学院机电工程学院, 2017.
Xue Fei. Design and simulation of key componets of self-walking green fodder harvester[D]. Qinhuangdao: College of Mechanical and Electronic Engineering, Hebei Normal University of Science&Technology, 2017.
4 吴巧梅. 平板刀式滚筒切碎装置的参数的研究与优[D]. 咸阳: 西北农林科技大学机械与电子工程学院, 2010.
Wu Qiao-mei. Study and optimization of the parameter of slab cutter cylinder type shredding mechanism[D]. Xianyang: College of Mechanical and Electronic Engineering, Northwest A&F University, 2010.
5 任冬梅. 一种全齿轮传动青饲料收获机关键技术研究和设计[D]. 济南: 山东大学机械工程学院, 2017.
Ren Dong-mei. Research and design on all-gear transmission corn silage machine[D]. Jinan: College of Mechanical Engineering, Shandong University, 2017.
6 杨颖, 尚琴琴, 王英博, 等. 4QX-12型玉米青贮收获机的切碎性能分析与试验[J]. 农机化研究, 2017, 39(3): 42-46.
Yang Ying, Shang Qin-qin, Wang Ying-bo, et al. Chopped performance analysis and test on 4QX-12 silage maize harvester[J]. Journal of Agricultural Mechanization Research, 2017, 39(3): 42-46.
7 O'Dogherty M J, Hubent J A, Dyson J, et al. A study of the physical and mechanical properties of wheat straw[J]. Journal of Agricultural Engineering Research, 1995, 62(2): 133-142.
8 O'Dogherty M J. A review of research on forage chopping[J]. Journal of Agricultural Engineering Research, 1982, 27(4): 267-289.
9 Ige M T, Finner M F. Particle movement through the cutterhead of a cylindrical type forage harvester[J]. Transactions of Asae, 1975, 18(6): 1017-1020.
10 Johnson P C, Clementson C L, Mathanker S K, et al. Cutting energy characteristics of miscanthus x giganteus stems with varying oblique angle and cutting speed[J]. Biosystems Engineering, 2012, 112(1): 42-48.
11 吴子岳, 高焕文, 张晋国. 玉米秸秆切断速度和切断功耗的试验研究[J]. 农业机械学报, 2001, 32(2): 38-41.
Wu Zi-yue, Gao Huan-wen, Zhang Jin-guo. Study on cutting velocity and power requirementin a maize stalk chopping process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 38-41.
12 万霖, 车刚, 汪春, 等. 4QZR-30型青贮饲料收获机设计与试验[J]. 农业机械学报, 2008, 39(3): 187-190.
Wan Lin, Che Gang, Wang Chun, et al. Design and experiment of 4QZR-30 forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3): 187-190.
13 McRandal D M, McNulty P B. Impact cutting behaviour of forage crops I. Mathematical models and laboratory tests[J]. Journal of Agricultural Engineering Research, 1978, 23(3): 313-328.
14 魏元振, 李其昀, 曹树红, 等. 玉米植株受切运动规律试验分析[J]. 农业机械学报, 2012, 43(增刊1): 116-119, 145.
Wei Yuan-zhen, Li Qi-yun, Cao Shu-hong, et al. Experiment on motion law of being cutted maize stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Sup.1): 116-119, 145.
15 张宗玲, 韩增德, 李晓栋, 等. 玉米穗茎兼收割台切碎装置参数优化[J]. 农业机械学报, 2018, 49(增刊1): 265-274.
Zhang Zong-ling, Han Zeng-de, Li Xiao-dong, et al. Optimization of parameters for stalk chopper of corn harvester for reaping both corn stalk and spike[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.1): 265-274.
16 Jamshidpouya M, Najafi G, Hashjin T T. Design, fabrication and evaluation of electric forage chopper with adjustable[J]. Journal of Agricultural Science and Technology, 2018, 20(5): 923-938.
17 车刚, 万霖, 张伟, 等. 青贮饲料收获机实体设计与试验[J]. 农业机械学报, 2010, 41(2): 82-86.
Che Gang, Wan Lin, Zhang Wei, et al. Solid design and experiment of forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 82-86.
18 吕金庆, 杨颖, 尚琴琴, 等. 玉米青贮收获机切碎性能试验研究[J]. 东北农业大学学报, 2016, 47(4): 102-108.
Jin-qing Lyu, Yang Ying, Shang Qin-qin, et al. Study on chopping performance of silage maize harvester[J]. Journal of Northeast Agricultural University, 2016, 47(4): 102-108.
19 DG/T052-2019. 青饲料收获机[S].
20 任露泉. 试验设计及其优化[M]. 北京: 科学出版社, 2009.
21 程超, 付君, 陈志, 等. 玉米籽粒收获机清选装置参数优化试验[J]. 农业机械学报, 2019, 50(7): 151-158.
Cheng Chao, Fu Jun, Chen Zhi, et al. Optimization experiment on cleaning device parameters of corn kernel harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 151-158.
22 付乾坤, 付君, 陈志, 等. 秸秆捡拾打捆机振动去土作业参数优化[J]. 农业工程学报, 2018, 34(8): 26-33.
Fu Qian-kun, Fu Jun, Chen Zhi, et al. Optimization of working parameters on soil removal of stover pickupbaler by vibration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 26-33.
23 周杰,罗艳,王珣,等. 基于响应面的封头冲压成形工艺多目标优化[J]. 吉林大学学报: 工学版, 2016, 46(1): 205-212.
Zhou Jie, Luo Yan, Wang Xun, et al. Multi-objective optimization of stamping forming process of head based on response surface model [J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(1): 205-212.
24 于昭洋, 胡志超, 王海鸥, 等. 大蒜果秧分离机构参数优化及试验[J]. 农业工程学报, 2015, 31(1): 40-46.
Yu Zhao-yang, Hu Zhi-chao, Wang Hai-ou, et al. Parameters optimization and experiment of garlic picking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 40-46.
25 葛云, 张立新, 谷家伟, 等. 对辊式红花采收装置参数优化及试验[J]. 农业工程学报, 2015, 31(21): 35-42.
Ge Yun, Zhang Li-xin, Gu Jia-wei, et al. Parameter optimization and experiment of dual rollerharvesting device for safflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 35-42.
26 王磊, 张宏文, 刘巧. 胶棒滚筒棉花采摘头采收性能试验[J]. 农业工程学报, 2016, 32(18): 35-41.
Wang Lei, Zhang Hong-wen, Liu Qiao. Test on harvest performance of cotton picking head with rubber-bar roller[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 35-41.
27 曹卫彬, 连国党, 牛驰, 等. 梳夹式红花丝采摘头等高采收性能试验与参数优化[J]. 农业工程学报, 2018, 34(22): 36-44.
Cao Wei-bin, Lian Guo-dang, Niu Chi, et al. Harvest performance test and parameteroptimization of comb-type safflower-filaments picking head at same height[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 36-44.
28 刘颖, 张凯, 于向军. 基于代理模型的中空轴式大型静压轴承多目标优化[J]. 吉林大学学报: 工学版,2017, 47(4): 1130-1137.
Liu Ying, Zhang Kai, Yu Xiang-jun.Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1130-1137.
[1] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[2] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[3] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[4] FU Jun,QIAN Zhi-hui,YIN Wei,WANG Jia-jia,REN Lu-quan. Experimental study of friction and tensile properties of wheat [J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
[5] ZHOU De-yi, WANG Zi-jia, ZHANG Dan-dan, WU Guan-jun, ZHOU Han-yu. The new device of stalk cutting within corn narvester [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 113-116.
[6] YAN Hong-yu,WU Wen-fu,YIN Hui-min, HAN Feng. Influence of working parameters on loss rate of vertical roll corn harvester [J]. 吉林大学学报(工学版), 2010, 40(01): 113-0118.
[7] Li Jie,Yan Chu-liang,Yang Fang-fei . Dynamic simulation and parameter optimization of the
combine harvester vibration sieve
[J]. 吉林大学学报(工学版), 2006, 36(05): 701-0704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!