Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1370-1374.doi: 10.13229/j.cnki.jdxbgxb20200252

Previous Articles    

Dynamic object detection method of video surveillance based on motion vector space coding

De-lun PAN1(),Jun JI2,Yue-jin ZHANG3   

  1. 1.Information Network Center,Beijing Sport University,Beijing 100084,China
    2.Library,Beijing Sport University,Beijing 100084,China
    3.School of Information Engineering,East China Jiaotong University,Nanchang 330013,China
  • Received:2020-04-17 Online:2021-07-01 Published:2021-07-14

Abstract:

In the current video monitoring dynamic target detection process, the pre-estimation of the target position is ignored, which leads to a long detection time and a large detection error. To solve this problem, a dynamic target detection method for video surveillance based on motion vector space coding is proposed. Motion vector space coding method is applied for background modeling, CamShift target tracking algorithm based on kalman filter is used to detect the target, and estimate the search scope and the location of the target at the next appearing moment. CamShift is combined with estimation results to search the true location, correct the target search scope, acceleration and speed, thus, completing the video monitoring dynamic target detection. The experimental results show that the proposed method has high efficiency in detecting dynamic targets and high accuracy in detecting results.

Key words: motion vector space coding, video surveillance, background modeling, dynamic target detection

CLC Number: 

  • TP391

Fig.1

Test results by different methods"

Fig.2

Detection accuracy by different methods"

1 田合雷, 丁胜, 于长伟, 等. 基于目标检测及跟踪的视频摘要技术研究[J]. 计算机科学, 2016, 43(11):297-299, 312.
Tian He-lei, Ding Sheng, Yu Chang-wei, et al. Research of video abstraction based on object detection and tracking[J]. Computer Science, 2016, 43(11):297-299, 312.
2 李均利, 尹宽, 储诚曦, 等. 视频目标跟踪技术综述[J]. 燕山大学学报, 2019, 43(3):251-262.
Li Jun-li, Yin Kuan, Chu Cheng-xi, et al. Review of video target tracking technology[J]. Journal of Yanshan University, 2019, 43(3):251-262.
3 刘艳波. 一种用于传感器网络的目标检测方法改进研究[J]. 计算机仿真, 2016, 33(9):317-320.
Liu Yan-bo. A used to improve target detection method of sensor network research[J]. Computer Simulation, 2016, 33(9):317-320.
4 龚畅, 王华君, 李荣,等. 基于状态依赖检测的视频运动目标轨迹跟踪算法[J]. 现代电子技术, 2016, 39(7):51-56.
Gong Chang, Wang Hua-jun, Li Rong, et al. Video moving target trail tracking algorithm based on state dependence detection[J]. Modern Electronics Technique, 2016, 39(7):51-56.
5 张谢华, 赵小虎. 煤矿智能视频监控中的运动目标检测研究[J]. 工矿自动化, 2016, 42(4):31-36.
Zhang Xie-hua, Zhao Xiao-hu. Research on moving target detection in coal mine intelligent video monitoring[J]. Industry and Mine Automation, 2016, 42(4):31-36.
6 杨丹, 戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报, 2018, 23(12):1813-1828.
Yang Dan, Dai Fang. Improved ViBe algorithm for detection of moving objects[J]. Journal of Image and Graphics, 2018, 23(12):1813-1828.
7 陈欣佳, 刘艳霞, 洪晓斌, 等. 基于SSD-CF的无人艇目标检测跟踪方法[J]. 中国测试, 2019, 45(2):145-150.
Chen Xin-jia, Liu Yan-xia, Hong Xiao-bin, et al. Unmanned boat target detection and tracking method based on SSD-CF[J]. China Measurement and Testing Technology, 2019, 45(2):145-150.
8 杨海林, 蔡启忡, 薛圣利,等. 基于改进的VIBE算法在铁路智能视频监控入侵检测的研究[J]. 科学技术与工程, 2016, 16(21):80-82, 87.
Yang Hai-lin, Cai Qi-zhong, Xue Sheng-li, et al. Research on railway video monitoring and moving target detection based on improved ViBE algorithm[J]. Science Technology and Engineering, 2016, 16(21):80-82, 87.
9 赵振杰, 方勇纯, 张雪波. 一种基于筛选机制的快速概率占据图目标定位算法[J]. 机器人, 2016, 38(1):17-26.
Zhao Zhen-jie, Fang Yong-chun, Zhang Xue-bo. A sifting mechanism based object localization algorithm for fast probabilistic occupancy map[J]. Robot, 2016, 38(1):17-26.
10 何松华, 胡霞, 张军. 弹载宽带相控阵雷达高度目标检测的通道级STAP方法[J]. 信号处理, 2016, 32(5):528-535.
He Song-hua, Hu Xia, Zhang Jun. Channel-level STAP method for lofty target detection of missile-borne wideband phased-array radar[J]. Journal of Signal Processing, 2016, 32(5):528-535.
[1] LI Zhi-hui, XIA Ying-ji, QU Zhao-wei, REN Jing-chen. Data-driven background model in video surveillance [J]. 吉林大学学报(工学版), 2017, 47(4): 1286-1294.
[2] CHEN Da-wei, LIU Hai-long, LI Jin-ping. FPGA implementation of real-time detection system of moving objects in complicated static background [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 287-290.
[3] FU Bo, LI Wen-hui, CHEN Bo, WANG Cong, WANG Ying. Abnormal behavior detection based on weighted energy of optical flow [J]. 吉林大学学报(工学版), 2013, 43(06): 1644-1649.
[4] FENG Jie, CHEN Yao-wu. Background modeling and foreground object segmentation in H.264 compressed domain [J]. 吉林大学学报(工学版), 2011, 41(01): 239-0243.
[5] WANG Dian-hai, HU Hong-yu, LI Zhi-hui, QU Zhao-wei. Detection and recognition algorithm of illegal parking [J]. 吉林大学学报(工学版), 2010, 40(01): 42-0046.
[6] ZHAO Hong-wei,FENG Jia,ZANG Xue-bai,SONG Bo-tao. Practical moving target detection and tracking algorithm [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 386-0390.
[7] YU Zhe-zhou,LI Jiang-chun,ZHOU Xu,YANG Bin,YANG Li,HUANG Lan. Feedback model for object detection based on video stream [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 401-0405.
[8] HU Hong-yu, LI Zhi-hui, QU Zhao-wei, WANG Dian-hai. Traffic event representation and recognition based on context [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 158-0162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!