Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 1997-2006.doi: 10.13229/j.cnki.jdxbgxb20200848

Previous Articles    

Wind speed prediction based on machine learning and new energy pumping unit wind power control

Chun-you ZHANG1,2(),Liang WANG1(),Hong LI1,Tong-yan WU1,Yan LI3   

  1. 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.College of Engineering,Inner Mongolia University for the Nationalities,Tongliao 028000,China
    3.College of Electronics and Automation,Inner Mongolia Electronic Information Vocational Technical College,Hohhot 010070,China
  • Received:2020-11-03 Online:2021-11-01 Published:2021-11-15
  • Contact: Liang WANG E-mail:zcy19801204@126.com;wangliang@buaa.edu.cn

Abstract:

This paper takes the new energy pumping unit as the research object. In order to improve the ability of new energy pumping unit,first, the maximum wind energy tracking control strategy of the wind turbine is studied, and a wind speed estimation method-support vector regression is presented. Then, the key parameters in the estimation model are optimized by particle swarm optimization. Finally, a feedback linearized sliding mode controller is designed for speed feedback control. By comparing with PID controller, it is verified that the new controller has the characteristics of rapidity and anti-disturbance. Therefore, the maximum wind power tracking control strategy proposed in this paper meets the energy-saving requirements of new energy pumping units.

Key words: wind energy, new energy pumping unit, support vector regression(SVR), feedback linearization, power tracking

CLC Number: 

  • TK89

Fig.1

Structure diagram of beam pumping unit"

Fig.2

Structure diagram of wind turbine and electromotor hybrid transmission system"

Fig.3

Curve of the relationship between wind energy utilization coefficient and tip speed ratio"

Fig.4

Wind turbine characteristic curve"

Fig.5

Flow chart of parameter optimization based on PSO"

Fig.6

Fitness curve"

Fig.7

Regression result on test samples for C=142.847, δ2=187.851"

Fig.8

Step wind speed and pipeline pressure signal"

Fig.9

Comparison of wind turbine speed response"

Fig.10

Comparison of wind turbines capture wind power"

Fig.11

Comparison of wind turbine-pumpsystem output power"

Fig.12

Comparison of wind energy utilization coefficient"

Fig.13

Wind speed disturbance signal"

Fig.14

Comparison of speed stability whenwind speed disturbance"

1 Zhang Chun-you, Wang Liang, Li Hong. Experiments and simulation on a late-model wind-motor hybrid pumping unit[J]. Energies, 2020, 13(4):No.994.
2 Zhang Chun-you, Wang Liang, Li Hong. Optimization method based on process control of a new-type hydraulic-motor hybrid beam pumping unit[J]. Measurement, 2020, 158: No.107716.
3 程启明,程尹曼,汪明媚,等. 风力发电系统中最大功率点跟踪方法的综述[J].华东电力, 2010, 38(9): 1393-1399.
Cheng Qi-ming, Cheng Yin-man, Wang Ming-mei, et al. Review on the method of tracking the maximum power point in wind power generation system[J]. East China Electric Power, 2010, 38(9): 1393-1399.
4 Chen Hu, Qian Chun-zhen, Ma Jian-guang, et al. Study on maximum power point tracking strategy for direct-driven permanent magnet synchronous generating system[J]. Power System Protection and Control, 2012, 40(22): 83-87, 93.
5 张秀玲, 谭光忠, 张少宇, 等. 采用模糊推理最优梯度法的风力发电系统最大功率点跟踪研究[J]. 中国电机工程学报, 2011, 31(2): 119-123.
Zhang Xiu-ling, Tan Guang-zhong, Zhang Shao-yu, et al. Research on maximum power point tracking of wind power generation system based on fuzzy inference optimal gradient[J]. Proceedings of the CSEE, 2011,31(2):119-123.
6 Soufi Y, Kahla S, Bechouat M. Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by PMSG connected to the grid[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20950-20955.
7 Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J].IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
8 Barakati S M, Kazerani M, Aplevich J D. Maximum power tracking control for a wind turbine system including a matrix converter[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 705-713.
9 Sarvi M, Abdi S H, Ahmadi S. A new method for rapid maximum power point tracking of PMSG wind generator using PSO_fuzzy logic[J]. Technical Journal of Engineering and Applied Sciences, 2013, 3(17): 1984-1995.
10 Liu Fang-rui, Duan Shan-xu, Liu Fei, et al. A variable step size INC MPPT method for PV systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622-2628.
11 赵骞, 邵一川, 姚兴佳, 等. 风电机组基于最优跟踪路径的改进型 MPPT 控制[J].中国电机工程学报,2020,40(1):282-289, 394.
Zhao Qian, Shao Yi-chuan, Yao Xing-jia, et al. Improved MPPT Control of Turbine Based on Optimal Tracking Path[J]. Proceedings of the CSEE, 2020, 40(1): 282-289, 394.
12 李飞龙, 林勇刚, 李伟, 等. 风能静液压传动控制技术[J].吉林大学学报:工学版, 2014, 44(6): 1664-1668.
Li Fei-long, Lin Yong-gang, Li Wei, et al. Energy hydraulic transmission system of wind turbine[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1664-1668.
13 韩利坤. 基于能量液压传递的风力机“变速恒频”技术研究[D]. 杭州:浙江大学机械工程学院, 2012.
Han Li-kun. Research on the“variable speed and constant fre-quency”technology for wind turbines based on the energy hydraulic transmission[D]. Hangzhou: School of Mechanical Engineering, Zhejiang University, 2012.
14 艾超.液压型风力发电机组转速控制和功率控制研究[D]. 秦皇岛:燕山大学机械工程学院, 2012.
Ai Chao. Research on the rotating speed and power control over hydraulic type wind power generators [D]. Qinhuangdao: School of Mechanical Engineering, Yanshan University, 2012.
15 Bhowmik S, Spee R, Enslin J H R. Performance optimization for doubly fed wind power generation systems[J]. IEEE Transactions on Industry Applications, 1999, 35(4): 949-958.
16 Tan K, Islam S. Optimal control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J]. IEEE Transactions on Energy Convers, 2004, 19(2): 392-399.
17 Li Hui, Shi K L, Mclaren P G. Neural network based sensorless maximum wind energy capture with compensated power coefficien[J]. IEEE Transactionson Industry Applications, 2005, 41(6): 1548-1556.
18 Jena D, Rajendran S. A review of estimation of effective wind speed based control of wind turbines[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1046-1062.
19 刘昕晖, 李春爽, 陈琳, 等. 游梁式抽油机节能技术综述[J]. 吉林大学学报: 工学版, 2021, 51(1): 1-26.
Liu Xin-hui, Li Chun-shuang, Chen Lin, et al. Review of energy saving technologies for beam pumping units[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-26.
20 王毅,朱晓荣,赵书强. 风力发电系统的建模与仿真[M].北京: 中国水利水电出版社,2015.
21 李晓林.变转速液压泵控马达系统的恒转速控制研究[D]. 北京: 北京理工大学自动化学院,2014.
Li Xiao-lin. Research on constant speed control of variable-speed hydraulic pump-controlled motor system[D]. Automation Academy, Beijing Institute of Technology, 2014.
22 Wang Li-hua, Zhang Chun-you. Research on energy saving principle of pumping unit driven by wind turbine[C]∥Proceedings of 2019 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 2019: 21-26.
[1] Bin ZHANG,Guo-zan CHENG,Hao-cen HONG,Chun-xiao ZHAO,Da-peng BAI,Hua-yong YANG. Structure optimization of triangular groove of valve plate in axial piston pump based on SVR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1213-1221.
[2] XU Hong-guo, PENG Tao, LIU Hong-fei, XU Yan. Feedback linearization for steering stability control of tractor-semitrailer [J]. 吉林大学学报(工学版), 2012, 42(02): 272-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!