Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2121-2127.doi: 10.13229/j.cnki.jdxbgxb20200590

Previous Articles    

Double K fracture characteristics of recycled concrete three⁃point bending beam mixed with lithium slag

Yong-jun QIN(),Nan CHEN,Peng-jie LIN,Jiang YU   

  1. School of Civil Engineering and Architecture,Xinjiang University,Urumqi 830047,China
  • Received:2020-11-07 Online:2021-11-01 Published:2021-11-15

Abstract:

To study the effects of different lithium slag contents and recycled coarse aggregate percentages on the double-K fracture toughness of recycled concrete with lithium slag, 36 standard three-point bending beams of recycled concrete with lithium slag, which include 9 mix ratios about lithium slag content of 0%,10%,20% and recycled coarse aggregate percentage of 0%,30%,50%, were prepared for fracture test. Based on the analysis of crack propagation process, a prediction model for fracture toughness of concrete was proposed. The research results show that the double K fracture toughness of concrete all increases first and then decreases with the increase of the recycled coarse aggregate percentage. The addition of lithium slag can improve the double K fracture toughness of the concrete and offset the deficiency of the concrete fracture performance with high recycled coarse aggregate percentage. The double K properties are optimal when the lithium slag content and recycled coarse aggregate account for 20 % and 30 % respectively. The initial fracture toughness and unstable fracture toughness reach 0.54 MPa·m1/2 and1.07 MPa·m1/2, increasing by 42.1% and 23 % respectively compared with the reference group.

Key words: lithium slag, recycled coarse aggregate, three point bending beam, double-K fracture toughness

CLC Number: 

  • TU528

Table 1

Mass fraction of cement and lithium slag"

材料CaOSiO2Al2O3Li2OLossFe2O3SO3
水泥60.2321.265.03-2.173.242.65
锂渣7.9954.4019.810.186.721.418.31

Table 2

Main physical properties of coarse aggregate"

粗骨料类别微粉含量/%吸水率/%针片状含量/%坚固性/%表观密度/(kg·m-3
天然0.30.5512640
再生0.53.4624.22825

Table 3

Concrete mixing ratio and mechanical performance parameters"

编号RC/%LS/%混凝土配合比/(kg·m-3

28 d抗压

强度/MPa

劈裂拉强度/MPa
锂渣再生粗骨料净用水卵石水泥附加用水
LS-RC-10000195523.51221.4433.0034.723.38
LS-RC-201043.30195523.51221.4389.7036.464.06
LS-RC-302086.60195523.51221.4346.4040.584.27
LS-RC-43000366.4195523.5854.9433.07.8442.093.82
LS-RC-5301043.3366.4195523.5854.9389.77.8444.624.23
LS-RC-6302086.6366.4195523.5854.9346.47.8447.534.38
LS-RC-75000610.7195523.5610.7433.013.0737.243.56
LS-RC-8501043.4610.7195523.5610.7389.713.0740.864.03
LS-RC-9502086.6610.7195523.5610.7346.413.0742.834.19

Fig.1

Concrete three-point bending beam specimen"

Fig.2

Positioning display of resistance strain gauge"

Fig.3

P-ε curve"

Table 4

Fracture parameters calculated by the double-K fracture model"

编号试件数量Pini/kNPmax/kNCMOD/μmE/GPaac/mmKIcini/(MPa·m1/2KIcun/(MPa·m1/2
LS-RC-141.522.4644.5629.3500.380.87
LS-RC-241.762.6646.2131.0520.440.93
LS-RC-341.822.9048.3430.7510.440.95
LS-RC-441.752.5846.2831.1520.440.93
LS-RC-541.92.7749.6731.5530.481.03
LS-RC-642.152.9751.9331.9520.541.07
LS-RC-741.482.3746.2828.6510.370.83
LS-RC-841.572.5850.7529.0520.390.96
LS-RC-941.642.7352.1530.6510.411.01

Fig.4

P-CMOD curve"

Fig.5

Fitting curve of fracture toughness and splitting tensile strength"

Fig.6

Influence of LS on double-K fracture parameters"

Fig.7

Influence of RCA on double-Kfracture parameters"

Fig.8

Influence of replacement rate of recycled coarse aggregate on double K toughness under the same lithium slag content"

1 肖建庄. 再生混凝土[M]. 北京:中国建筑工业出版社,2008.
2 秦拥军,严文龙,于江. 掺锂渣再生混凝土弹性模量及应力-应变曲线试验[J].科学技术与工程,2016,16(16):254-262.
Qin Yong-jun, Yan Wen-long, Yu Jiang. Elastic modulus and stress-strain curve test of recycled concrete with lithium slag[J]. Science Technology and Engineering, 2016,16(16):254-262.
3 秦拥军,李振兴,侯勇辉,等. 掺杂锂渣再生混凝土轴压长柱受压性能试验研究[J].武汉理工大学学报,2017,39(3):65-70.
Qin Yong-jun, Li Zhen-xing, Hou Yong-hui, et al. Experimental study on compressive performance of doped lithium slag axial recycled concrete long columns[J]. Journal of Wuhan University of Technology, 2017,39(3):65-70.
4 Qin Y J, Chen J J, Li Z X, et al. The mechanical properties of recycled coarse aggregate concrete with lithium slag[J]. Advances in Materials Science and Engineering, 2019, 2019 (1): 1-12.
5 陈洁静,秦拥军,肖建庄,等. 基于CT技术的掺锂渣再生混凝土孔隙特征研究[J/OL]. [2020-10-30].
6 河海大学. DL/T 5332—2005, 水工混凝土断裂试验规程[M]. 北京:中国电力出版社,2006.
7 李晓东,董伟,吴智敏,等. 小尺寸混凝土试件双K断裂参数试验研究[J]. 工程力学,2010, 27(2):166-171, 185.
Li Xiao-dong, Dong Wei, Wu Zhi-min, et al. Experimental investigation on double-K fracture parameters for small size specimens of concrete[J]. Engineering Mechanics, 2010,27(2): 166-171, 185.
8 胡少伟,米正祥. 标准钢筋混凝土三点弯曲梁双K断裂特性试验研究[J]. 建筑结构学报,2013,34(3):152-157.
Hu Shao-wei, Mi Zheng-xiang. Experimental study on double-K fracture characteristics of standard reinforced concrete three-point beam[J]. Journal of Building Structures, 2013,34(3):152-157.
9 罗素蓉,白俊杰. 纳米改性对再生混凝土双K断裂参数的影响[J]. 水利学报,2018,49(6):670-677.
Luo Su-rong, Bai Jun-jie. Effect of nanometer modification on double K fracture parameters of recycled concrete[J]. Journal of Hydraulic Engineering,2018,49(6):670-677.
10 梁宁慧,缪庆旭,刘新荣,等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报:工学版,2019,49(4):1144-1152.
Liang Ning-hui, Miao Qing-xu, Liu Xin-rong, et al. Determination of fracture toughness and softening traction separation law of polypropylene fiber reinforced concrete[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(4): 1144-1152.
11 . 混凝土用再生粗骨料[S].
12 徐世烺. 混凝土断裂力学[M].北京:科学出版社, 2011.
13 李丽丹. 黏聚力模型在混凝土裂纹扩展中的应用[D]. 武汉:武汉科技大学理学院, 2015.
Li Li-dan. Application of cohesive traction crack model in crack propagation in concrete[D]. Wuhan:Faculty of Science, Wuhan University of Science and Technology,2015.
[1] Yi LI,Yue-qi SU. Gas permeability and meso-structure of fiber reinforced concrete under carbonation based on different pore sizes [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1287-1295.
[2] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[3] Han-bing LIU,Xin GAO,Ya-feng GONG,Shi-qi LIU,Wen-jun LI. Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 936-945.
[4] Juan HE,Cong-mi CHENG,Yi-nan YANG,Ya-fang ZHANG,Ming-feng ZHONG. Effect of admixture on properties of GRC under hydrothermal curing conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 648-653.
[5] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[6] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[7] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[8] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[9] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[10] GAO Xiao-jian, SUN Bo-chao, YE Huan, WANG Zi-long. Influence of mineral admixtures on the rheological behavior of self-compacting concrete [J]. 吉林大学学报(工学版), 2016, 46(2): 439-444.
[11] LIU Jun-zhe, YUAN Wei-jing, HE Zhi-min, BA Ming-fang, CHEN Jian-bin. Influence of carbonation on alkali-aggregate reaction in concrete [J]. 吉林大学学报(工学版), 2015, 45(3): 783-787.
[12] SU Xiao-ping,WANG Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles [J]. 吉林大学学报(工学版), 2015, 45(1): 112-120.
[13] WANG Jia-chun, YAN Pei-yu. Probabilistic analysis of rebar rust in concrete under marine environment [J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
[14] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume [J]. 吉林大学学报(工学版), 2013, 43(03): 671-676.
[15] GAO Xiao-jian,KAN Xue-feng, YANG Ying-zi. Shrinkage distribution of silica fume concrete prism with one-sided drying [J]. 吉林大学学报(工学版), 2010, 40(03): 694-0698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!