Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 79-90.doi: 10.13229/j.cnki.jdxbgxb20200792

Previous Articles     Next Articles

Defects repair technology of SUS301L stainless steel laser weld

Wen-quan WANG1(),Yan-xin WANG1,Hong-xiao WANG2,Xin LI1(),Peng WU3   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.CRRC Changchun Railway Vehicles Co. ,Ltd. ,Changchun 130021,China
    3.Changzhou Xuan?hao Machinery Co. ,Ltd. ,Changzhou 213000,China
  • Received:2020-08-23 Online:2022-01-01 Published:2022-01-14
  • Contact: Xin LI E-mail:wwq@mails.jlu.edu.cn;li_xin@jlu.edu.cn

Abstract:

It is found that the assembly gap is inevitable in the welding process of the car body,especially in the manufacturing process of the large-size components such as the side walls of the vehicle body. In general,the existence of assembly gap will lead to quality problems,such as lack of fusion and surface forming,which is harmful to the static strength and fatigue strength of the weld. In this paper,laser welding was used to remelt and repair the surface collapse defect of laser weld,and the effects of laser power,welding speed and focusing distance on the surface quality and mechanical properties of repaired welds were studied. Furthermore,the orthogonal optimization test method was used to optimize the laser repair process parameters. The optimized parameters of laser repair process are as follows: laser power is 1.6 kW,welding speed is 3.81 m/min and focusing amount is 0 mm. The maximum tensile shear force of laser repaired weld is 16.3 kN,which is greater than that of the laser weld without defects,and the crystal grains of the laser repaired joint are not coarsened. The research shows that the laser repair technology can effectively repair the surface collapse of the laser weld and the tensile shear force of the repair weld can meet the technical requirements of the actual production. This technology can be applied to the actual production.

Key words: stainless steel sidewall, gap, weld repair, orthogonal optimization, tensile shear load

CLC Number: 

  • TG456.7

Fig.1

Dimensions of test plate used for laser lap welding"

Table 1

Laser repair process parameters"

P/kWv/(m·min-1df/mm
1.23.810
1.33.810
1.43.810
1.53.810
1.63.810
1.43.610
1.43.710
1.43.910
1.43.81+5
1.43.81+10

Fig.2

Micro-morphology of normal weld and defective weld"

Fig.3

Cross-section morphology of repaired weld under different laser powers(v=3.81 m/min,df=0 mm)"

Fig.4

Columnar crystal morphology of repaired weld under different laser powers"

Fig.5

Effect of laser power on tensile-shear force、interface fusion width and lower plate weld depth of repaired weld"

Fig.6

Cross-section morphology of repaired weld under different welding speeds (P=1.4 kW,df=0 mm)"

Fig.7

Effect of welding speed on tensile-shear force、interface fusion width and lower plate weld depth of repaired weld"

Fig.8

Cross-section morphology of repaired weld under different focusing distances(P=1.4 kW,v=3.81 m/min)"

Fig.9

Columnar crystal morphology of repaired weld under different focusing distances"

Fig.10

Effect of focusing distance on tensile-shear load,interface fusion width and lower plate weld depth of repaired weld"

Fig.11

Tensile shear load-displacement curve of repaired weld fractured at interface"

Fig.12

SEM image of fracture surface morphology at interface"

Fig.13

Tensile shear load-displacement curve of repaired weld fractured at HAZ"

Fig.14

SEM image of fracture surface morphology at HAZ"

Table 2

Experimental program and results"

A

激光功率P/kW

B

焊接速度v/(m·min-1

C

离焦量df/mm

F平均/kN
1(1)1.4(1)3.71(1)0(1)13
2(1)1.4(2)3.81(2)+5(2)15
3(1)1.4(3)3.91(3)+10(3)12
4(2)1.5(1)3.71(2)+5(3)12.2
5(2)1.5(2)3.81(3)+10(1)14.8
6(2)1.5(3)3.91(1)0(2)12.1
7(3)1.6(1)3.71(3)+10(2)13.2
8(3)1.6(2)3.81(1)0(3)16.3
9(3)1.6(3)3.91(2)+5(1)12.1

Table 3

Analysis of orthogonal test results"

方差来源偏差平方和S自由度方差F临界值Fα显著性水平显著性
A1.068920.534417.179F0.1(2,2)=90.1*
B18.016029.0078289.540F0.01(2,2)=990.01***
C0.762220.381112.250F0.1(2,2)=90.1*
误差0.062220.0311
总和19.90938

Fig.15

Cross-section morphology of laser welds"

1 张兰. 我国不锈钢焊接工艺研究现状及进展[J].山西冶金,2007,30(2): 1-5.
Zhang Lan. Present research status and development of welding technology for stainless steel in China[J]. Shanxi Metallurgy,2007,30(2): 1-5.
2 Wu Qiang,Gong Jin-ke,Chen Gen-yu,et al. Research on laser welding of vehicle body[J]. Optics & Laser Technology,2008,40(2): 420-426.
3 陈树娟,李希勇,郭会生,等. 不锈钢车体制造技术[J]. 信息化建设,2016(2): 239.
Chen Shu-juan,Li Xi-yong,Guo Hui-sheng,et al. Manufacturing technology of stainless steel metro vehicle[J]. Informatization Construction,2016(2): 239.
4 张乐乐,李培,刘晨. 焊接缺陷对转向架强度的影响[J]. 中国铁道科学, 2010, 31(2): 67-72.
Zhang Le-le, Li Pei, Liu Chen,et al. Influence of the weld defect on the structure strength of the bogie frame[J]. China Railway Science,2010,31(2): 67-72.
5 Nimaeh Nitipon,Muangjunburee Prapas. Improvement of welding repair aluminum alloy 6082 T6 by MIG welding process[J]. Materials Science Forum,2016,872: 8-12.
6 仲超,刘奋成,程洪茂,等. GH4169镍基高温合金TIG焊接修复组织和性能研究[J]. 热加工工艺,2019,48(3): 28-34.
Zhong Chao,Liu Fen-cheng,Cheng Hong-mao,et al. Study on microstructure and mechanical properties of GH4169 nickel based superalloy TIG welding repair zone[J]. Hot Working Technology,2019,48(3): 28-34.
7 徐子法,焦俊科,张正,等. 镍基高温合金激光修复工艺研究[J]. 材料导报,2019,33(19): 3196-3202.
Xu Zi-fa,Jiao Jun-ke,Zhang Zheng,et al. Research on laser repair process of ni-based superalloy[J]. Materials Review,2019,33(19) :3196-3202.
8 Lu Ching-wen,Wang Huei-sen,Chen Hou-guang,et al. Effects of heat treatment and Nd: YAG laser repair welding parameters on the microstructure and properties of a Cu–Ni–Si–Cr mold alloy[J]. Materials Science and Engineering: A,2021,799: No.140342.
9 Turichin G,Ⅰ Tsibulskiy,Kuznetsov M,et al. Influence of the gap width on the geometry of the welded joint in hybrid laser-arc welding[J]. Physics Procedia,2015,78: 14-23.
10 李磊,王洪潇,史春元. 焊接气氛对奥氏体不锈钢激光焊接接头组织与性能的影响[C]∥中国机械工程学会第八届中国北方焊接学术会议,石家庄,2012: 171-174.
11 Wang Hong-xiao,Wang Chun-sheng,He Guang-zhong,et al. Application of lap laser welding technology on stainless steel railway[C]∥Advanced Laser Manufacturing Technology,Beijing,China,2011: 2578-2582.
12 Gao Zhi-guo,Wu Yi-xiong,Huang Jian. Analysis of weld pool dynamic during stationary laser-MIG hybrid welding[J]. International Journal of Advanced Manufacturing Technology, 2009,44(9): 870-879.
13 Sudnik W,Radaj D,Breitschwerdt S,et al. Numerical simulation of weld pool geometry in laser beam welding[J]. Journal of Physics D: Applied Physics,2000,33(6): 662-671.
14 刘成财. 铝合金EBW熔池行为及焊缝成形规律的数值模拟研究[D]. 哈尔滨:哈尔滨工业大学材料科学与工程学院,2017.
Liu Cheng-cai. Numerical study on the welding pool behavior and weld formation regularity during electron beam welding of aluminum alloy[D]. Harbin:School of Materials Science and Engineering,Harbin Institute of Technology,2017.
15 .电子束及激光焊接接头、欠缺质量分级指南[S].
16 孟威. 高强钢T型搭接接头激光焊接动态过程与成形特征研究[D]. 上海: 上海交通大学材料科学与工程学院,2014.
Meng Wei. Studies on the dynamic process and shape characteristic during laser lap welding T-joints for high strength steel[D]. Shanghai: School of Materials Science and Engineering,Shanghai Jiaotong University,2014.
17 温鹏,邬瑞峰,王秀义,等. 不锈钢车体搭接接头激光非熔透焊接工艺及其拉剪性能[J]. 中国机械工程,2017,28(11): 1355-1361.
Wen Peng,Wu Rui-feng,Wang Xiu-yi,et al. Laser welding parameters and tensile properties of partial penetration lap joint for stainless train body[J]. China Mechanical Engineering,2017,28(11): 1355-1361.
18 唐舵,王春明,田曼,等. SUS301L-HT不锈钢激光焊接与MIG焊接对比试验研究[J]. 中国激光,2015,42(7): 98-105.
Tang Duo,Wang Chun-ming,Tian Man,et al. Contrasting study on quality of SUS301L-HT joints in fiber laser welding and MIG welding[J]. Chinese Journal of Lasers,2015,42(7): 98-105.
[1] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[2] JIA Hong-fei, TAN Yun-long, LI Qiang, YANG Dong. Gap acceptance model of expressway weaving area based on driver characteristics [J]. 吉林大学学报(工学版), 2015, 45(1): 55-61.
[3] ZHU Xiao-lin, YU Ming, GAO Qing, WANG You-tang. Pipe-soil gap induced by thermal deformation of ground heat exchange pipe [J]. 吉林大学学报(工学版), 2014, 44(4): 998-1003.
[4] SUN Zhi-yong, SUN Xiao-duan. Gap acceptance of merging in expressway work zone [J]. , 2012, (06): 1470-1474.
[5] ZHAN Di-Ni, ZHANG Hui-Ping, ZHANG Gui-Lan, ZHANG Hong-Zhuang, LIU Xian-Li. Fabrication and optical property of nanosized cupric oxide films [J]. 吉林大学学报(工学版), 2010, 40(增刊): 252-0256.
[6] CHEN Yong-heng, Qu Zhao-wei, ZHENG Qian. Evatuation model of U-turn at unsignalized T-intersection [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 150-0153.
[7] CHEN Yong-heng;GE Xing;WANG Dian-hai . Delay model in twolane traffic flow induced by buses [J]. 吉林大学学报(工学版), 2009, 39(03): 576-0581.
[8] ZHANG Yun-yi, FENG Yue-ping, ZHONG Hui-xiang . Drawing technique based on circlefield
[J]. 吉林大学学报(工学版), 2008, 38(05): 1151-1154.
[9] Liang Chun-yan,Wang Chun-guang,Shen Zhan,Wang Dian-hai . Calculation method of travel time of rightturn vehicle at motorand
nonmotorvehicle mixed traffic intersection
[J]. 吉林大学学报(工学版), 2007, 37(05): 1053-1057.
[10] Wang Dian-hai,2, Sun Feng, Jin Sheng . Method of computing left-turn vehicle traffic capacity at two-phase intersection [J]. 吉林大学学报(工学版), 2007, 37(04): 767-771.
[11] Liu Chang,Wang Jing-yu,Sang Tao,Liang Tian-ye,Hu Xing-jun . Effect of gap between driver cab and freight body of heavyduty
truck on its aerodynamic characteristic
[J]. 吉林大学学报(工学版), 2007, 37(02): 280-0285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!