Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 934-941.doi: 10.13229/j.cnki.jdxbgxb20210058

Previous Articles    

Design of high speed motor power conversion system based on intelligent control algorithm

Li-heng WANG1,2(),Ming ZHUANG1,Kai YUAN1   

  1. 1.Institute of Plasma Physics Chinese Academy of Sciences,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China
    2.Science Island Branch,University of Science and Technology of China,Hefei 230026,China
  • Received:2021-01-12 Online:2022-04-01 Published:2022-04-20

Abstract:

In order to solve the problem of large conversion error in traditional power conversion system, a design of high-speed motor power conversion system based on intelligent control algorithm is proposed. On the basis of traditional hardware system, combined with the operation principle of fuzzy neural network in intelligent control algorithm, the controller equipment is designed to realize the modification of bidirectional buck converter, phase-shift reactor, rectifier and inverter, and adjust the hardware connection circuit of the system. Taking the high-speed motor as the research object, its basic working characteristics are analyzed. A fuzzy neural network control model is established. In this model, the instantaneous power of high-speed motor is calculated based on the working data of high-speed motor, and the power conversion function of high-speed motor is realized by the way of generating reverse current or torque ripple signal gain. The experimental results show that, compared with the traditional power conversion system, the average conversion error of the designed conversion system is reduced by 1.7 kW, and the application of the power conversion system can realize the effective control of high-speed motor power, which has a high utilization value in practical application.

Key words: intelligent control algorithm, high speed motor, motor power, power conversion system

CLC Number: 

  • TN432

Fig.1

Structure diagram of fuzzy neural network controller"

Fig.2

Bidirectional buck converter"

Fig.3

Main circuit diagram of inverter"

Fig.4

Power conversion circuit diagram"

Table 1

Specific performance data of experimental"

序 号性 能数 据
1类 别水冷高速永磁体同步电机
2额定数值380 V,96 A,50 kW,35 000 r/min
3转子构造外径87.4 mm,轴向140 mm,2极表贴,单极下永磁体分三段平行充磁,缠绕高强度的碳纤维护套
4定子构造

外径185 mm,内径89 mm,轴向140 mm

24槽的3相双层短距叠绕组斜1槽

5主要材料定转子铁心B20AT1500永磁体SmCo?XGS30H
6电机应用两端挂叶轮的制冷设备

Table 2

Specific performance data of shafting rotor"

序 号项 目数 据
1增压端入口压力/MPa0.35
2增压端出口压力/MPa0.5873
3增压端流量/(g·s-11011
4增压端入口温度/℃30
5增压端出口温度/℃100
6膨胀端入口压力/MPa0.5773
7膨胀端出口压力/MPa0.357
8膨胀端流量/(g·s-11011
9膨胀端入口温度/℃-55.12
10膨胀端出口温度/℃-80

Table 3

Application environment of experimental high"

序 号项 目数 据
1工作环境大气环境
2具体应用目的挂涡轮做冷却应用
3进气大气压/个3.5
4排气大气压/个5.7
5流量/(kg·s-11.1
6电机内部大气压压力/个6
7压缩机进气温度/35
8压缩机排气温度/℃100

Fig.5

Appearance structure of high speed motor"

Table 4

High speed motor running state parameter setting"

运行状态参数名称参数值
空载状态P2P齿槽转矩/(N·m)0.0495
最大气隙磁通密度/(kg·m-30.4904
反电动势/VDC600
螺纹/%3
最大速度@开环/(r·min-136 060
额定状态输出转矩13.8325
转矩脉动/参考值<5%4.8994
气隙磁通密度/T0.7497
输出功率/kW50.695
效率/%93.8467
升温60分钟/°C109
功率因数0.881
相电压/V219.6509
Ld /mH0.2484
Lq /mH0.3777
通量PM/(V·m-10.0691
铜损耗/W389.2162
交流涡流损耗/W520.3495
铁损失/W358.039
其他损失/W2056.3457
正常输入电压/V380
控制角/(°)15
电压利用率/%0.96

Table 5

Test results of power conversion function"

项 目
12345
设置转换目标有功功率/kW5048505049
无功功率/kW1512141315
传统电机功率转换系统有功功率/kW4845464647
无功功率/kW1411121214
文献[8]提出电机功率转换系统有功功率/kW5048484947
无功功率/kW1311131214
设计高速电机功率转换系统有功功率/kW5048495050
无功功率/kW1512131215

Fig.6

Power consumption test curve of high-speed motor"

1 王顺, 马晓建. 高速电主轴电机转子的建模及优化[J]. 自动化与仪表, 2019, 34(2): 79-82.
Wang Shun, Ma Xiao-jian. Modeling and optimization of high speed spindle motor rotor[J]. Automation & Instrumentation, 2019, 34(2): 79-82.
2 万援, 崔淑梅, 吴绍朋, 等. 扁平大功率高速永磁同步电机的护套设计及其强度优化[J]. 电工技术学报, 2018, 33(1): 55-63.
Wan Yuan, Cui Shu-mei, Wu Shao-peng, et al. Design and strength optimization of the carbon fiber sleeve of high-power high-speed pmsm with flat structure[J]. Transactions of China Electrotechnical Society, [1] 2018, 33(1): 55-63.
3 王大朋, 赵广泰. 不同转子护套高速永磁电机分析[J]. 电气工程学报, 2018, 13(10): 17-21.
Wang Da-peng, Zhao Guang-tai. Analysis of high-speed permanent magnet motors with different rotor sheaths[J]. Journal of Electrical Engineering, 2018, 13(10): 17-21.
4 贺冬梅, 张云, 高佳. 单相交流输入永磁同步电机功率变换电路研究[J]. 山东科学, 2018, 31(6): 78-84.
He Dong-mei, Zhang Yun, Gao Jia. Research on power conversion circuit of single-phase AC input permanent magnet synchronous motor[J]. Shandong Science, 2018, 31(6): 78-84.
5 蔡明村, 朱庆隆, 陈韦璁. 以模组化技术实现具隔离功能之高压大功率交流-直流转换器之研究[J]. 技术学刊, 2020, 35(1):29-42.
Cai Ming-cun, Zhu Qing-long, Chen Wei-cong. Design and implementation of an isolated high-power high-voltage AC/DC converter with modular technology[J]. Journal of Technology, 2020, 35(1):29-42.
6 肖丽, 范书瑞, 王博文, 等. 基于电流分析的开关磁阻电机功率变换器故障检测方法[J]. 电机与控制学报, 2018, 22(4): 67-74.
Xiao Li, Fan Shu-rui, Wang Bo-wen, et al. Fault detection method of power converter for switchedreluctance motor based on analysis of current[J]. Electric Machines and Control, 2018, 22(4): 67-74.
7 刘祎恺, 孔惠文, 程鹏, 等. 双馈感应发电机无锁相环直接功率控制[J]. 电机与控制应用, 2020, 47(8): 57-62, 81.
Liu Yi-kai, Kong Hui-wen, Cheng Peng, et al. Improved Non-PLL direct power control of doubly fed induction generator[J]. Electric Machines & Control Application, 2020, 47(8): 57-62, 81.
8 罗小青, 胡荣, 陈艳, 等. 一种高效DC-AC功率转换系统设计与仿真[J]. 沈阳工业大学学报, 2018, 40(4): 361-367.
Luo Xiao-qing, Hu Rong, Chen Yan, et al. Design and simulation of an efficient DC-AC power conversion system[J]. Journal of Shenyang University of Technology, 2018, 40(4): 361-367.
9 朱明正, 耿梦莹, 李旭, 等. 一种T型三电平功率转换系统的控制策略[J]. 电力电子技术, 2019, 53(3): 138-140.
Zhu Ming-zheng, Geng Meng-ying, Li Xu, et al. Control strategy of T-type three-level power conversion system[J]. Power Electronics, 2019, 53(3): 138-140.
10 刘加松, 宋玉宏, 周捷信. 双级输入升压型DC-DC变换器功率转换实用性设计[J]. 顺德职业技术学院学报, 2019, 17(3): 1-7.
Liu Jia-song, Song Yu-hong, Zhou Jie-xin. Practical design for dual input step-up DC-DC converter[J]. Journal of Shunde Polytechnic, 2019, 17(3): 1-7.
11 马春英, 李学武. 一种高效率混合型全桥DC/DC转换器的设计[J]. 电力系统保护与控制, 2018, 46(14): 143-151.
Ma Chun-ying, Li Xue-wu. Design of a high efficiency hybrid full bridge DC/DC converter[J]. Power System Protection and Control, 2018, 46(14): 143-151.
12 王凯, 冯娟. 一种复合电源系统大功率DC/DC变换器控制方法[J]. 国外电子测量技术, 2020, 39(2):107-110.
Wang Kai, Feng Juan. High-power DC/DC converter control method of hybridenergy storage system[J]. Foreign Electronic Measurement Technology, 2020, 39(2):107-110.
[1] CHANG Yu-chun, YU Zhao-jie, LI Jing, CAO Ling-jin, LI Qiang, DU Guo-tong. 11-bit 1-MS/s SAR ADC with a set-and-down switching procedure [J]. 吉林大学学报(工学版), 2013, 43(02): 480-484.
[2] SHEN Jing, ZHANG Xiao-lin. Low power consumption CMOS concurrent dual-band low noise amplifier [J]. 吉林大学学报(工学版), 2013, 43(02): 485-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!