Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2004-2013.doi: 10.13229/j.cnki.jdxbgxb20220266

Previous Articles    

Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm

Ji-zong LIU(),Xiao-ping WU,Wei-hua KONG   

  1. School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2022-03-19 Online:2022-09-01 Published:2022-09-13

Abstract:

In order to meet the requirements of the power performance and load capacity of the fuel cell hybrid electric tram, a parameter configuration method based on the fish swarm optimization algorithm was proposed. Based on the tram dynamics model, the traction calculation under three driving states is completed, the fuel cell/lithium battery/supercapacitor hybrid power system is selected, and the multi-objective function with the smallest system volume and mass is established. The algorithm solves the configuration number of fuel cells, lithium batteries and super capacitors, and analyzes the parameter configuration results and the dynamic performance verification. The results show that compared with the particle swarm method, the method proposed in this paper has faster convergence speed, smaller volume and mass, higher power density and energy density, and makes full use of the transmission advantages of each power source to ensure the stable operation of trams.

Key words: fuel cell hybrid system, tram, parameter configuration, fish swarm algorithm

CLC Number: 

  • TM911.4

Table 1

Main technical parameters of tram"

参数取值参数取值
整车质量/t58载重/t21

最大运行速度/

(km·h-1

70最大坡度角/%6
最大坡度速度/(km·h-130重力加速度/(m·s-29.8
最大加速度/(m·s-20.9Aw2.91
临界速度/(km·h-130Bw0.091
传动系统效率0.95Cw0.000 775
牵引逆变器效率0.93惯性质量系数0.1
电机效率0.9

Fig.1

Tram power model"

Fig.2

Case3 traction calculation"

Table 2

Traction power and traction energy in three driving states"

行驶状态行驶时间/s牵引功率/kW牵引能耗/kJ
Case152.2240.6312 500
Case2120.6537.7065 240
Case332.4874.5024 300.5

Fig.3

Topology structure of fuel cell hybrid power system"

Table 3

Main parameters of fuel cell"

参数取值参数取值
总功率/kW200质量/kg1000
工作电压/V450~680体积/mm32000×2000×650
最大电流/A600

Table 4

Main parameters of lithium battery"

参数锂电池超级电容
额定电压/V3.748
额定容量10 A·h165 F
内阻/mΩ1.56.3
最大持续电流/A120100
电池质量/kg0.313.9
电池体积/mm3203×127×6418×194×179

Table 5

Traditional parameter configuration method"

类型数量/个质量/kg体积/m3
燃料电池220005.2
锂电池565169.50.0876
超级电容1431987.72.076

Fig.4

Rear-end behavior"

Fig.5

Comprehensive performance design hierarchy"

Fig.6

Flow chart of parameter configuration method of fuel cell hybrid power system based on fish swarm optimization algorithm"

Fig.7

Objective function optimization iterative curve"

Table 6

Comparison of fish school optimization methods and traditional methods"

传统方法PSOAFSA
燃料电池数量/套222
单体锂电池数量/个565472490
单体超级电容数量/个143127125
最大输出功率/kW1113.7951016.8561017.27
最大储能/(kW·h)13.99711.99112.178
总质量/kg4157.23906.93884.5
总体积/m37.3647.1177.026
收敛时间/s-1.360.31

Fig.8

Speed-time curve of acceleration start process"

Fig.9

Power distribution curve"

1 侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2011, 18(1): 1-13.
Hou Ming, Yi Bao-lian. Development status and prospect of fuel cell technology[J]. Electrochemistry, 2011, 18(1): 1-13.
2 陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009, 44(1): 1-6.
Chen Wei-rong, Qian Qing-quan, Li Qi. Research status and development trend of fuel cell hybrid electric train[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6.
3 Siddiqui O, Dincer I. A review on fuel cell-based locomotive powering options for sustainable transportation[J]. Arabian Journal for Science and Engineering, 2019, 44(2): 677-693.
4 薛美根,杨立峰,程杰. 现代有轨电车主要特征与国内外发展研究[J]. 城市交通, 2008, 6(6): 87-91, 96.
Xue Mei-gen, Yang Li-feng, Cheng Jie. Research on the main characteristics of modern trams and their development at home and abroad[J]. Urban Transport, 2008, 6(6): 87-91, 96.
5 陈维荣,卜庆元,刘志祥,等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报, 2016 51(3): 430-436.
Chen Wei-rong, Bu Qing-yuan, Liu Zhi-xiang, et al. Design of fuel cell hybrid electric tram power system[J]. Journal of Southwest Jiaotong University, 2016 51(3): 430-436.
6 陈维荣,张国瑞,孟翔,等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报, 2017, 52(1): 1-8.
Chen Wei-rong, Zhang Guo-rui, Meng Xiang, et al. Dynamic analysis and design of fuel cell hybrid electric tram[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8.
7 李奇,孟翔,陈维荣,等. 燃料电池混合动力系统参数匹配与多目标优化[J].西南交通大学学报, 2019, 54(5): 1079-1086.
Li Qi, Meng Xiang, Chen Wei-rong, et al. Parameter matching and multi-objective optimization of fuel cell hybrid power system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086.
8 李燕,何怡刚. 基于萤火虫算法纯电动汽车参数匹配优化[J]. 系统仿真学报, 2019, 31(4): 795-801.
Li Yan, He Yi-gang. Parameter matching optimization of pure electric vehicle based on firefly algorithm[J]. Journal of System Simulation, 2019, 31(4): 795-801.
9 范永利,胡春燕,张悦,等. 求解全局优化问题的改进人工鱼群算法[J]. 软件导刊, 2019, 18(6): 80-84, 88.
Fan Yong-li, Hu Chun-yan, Zhang Yue, et al. Improved artificial fish swarm algorithm for global optimization problems[J]. Software Guide, 2019, 18(6): 80-84, 88.
10 Chen Wei-rong, Peng Fei, Liu Zhi-xiang, et al. System integration of China's first PEMFC locomotive[J]. Journal of Modern Transportation, 2013, 21(3): 163-168.
11 石红国,彭其渊,郭寒英. 城市轨道交通牵引计算算法[J]. 交通运输工程学报, 2004, 4(3): 30-33.
Shi Hong-guo, Peng Qi-yuan, Guo Han-ying. Urban rail transit traction calculation algorithm[J]. Chinese Journal of Transportation Engineering, 2004, 4(3): 30-33.
12 张晨威. 基于启发式人工鱼群算法的全局优化问题研究[J]. 江苏科技信息, 2017, 33(16): 25-27.
Zhang Chen-wei. Research on global optimization problem based on heuristic artificial fish swarm algorithm[J]. Jiangsu Science and Technology Information, 2017, 33(16): 25-27.
13 王扉. 一种新的改进人工鱼群算法[J]. 湖南城市学院学报: 自然科学版, 2017, 26(4): 52-55.
Wang Fei. A new improved artificial fish swarm algorithm[J]. Journal of Hunan City University(Natural Science Edition), 2017, 26(4): 52-55.
14 唐雪晨,王文锦,卢国波,等. 基于人工鱼群算法的多目标分布式光伏电源规划[J]. 电网与清洁能源, 2019, 35(1): 84-90.
Tang Xue-chen, Wang Wen-jin, Lu Guo-bo, et al. Multi-objective distributed photovoltaic power planning based on artificial fish swarm algorithm[J]. Power Grid and Clean Energy, 2019, 35(1): 84-90.
[1] Wu Dongmei, Du Zhijiang, Sun Lining. Robot assisted intramedullary interlocking nail system [J]. 吉林大学学报(工学版), 2006, 36(02): 232-0236.
[2] CONG Qian, CHAI Xiongliang, YANG Xiaodong, JIN Jingfu. Coal Adhesion Reduction on Tramcar by Flexible Bionics Technique [J]. 吉林大学学报(工学版), 2005, 35(04): 437-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!