Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3681-3692.doi: 10.13413/j.cnki.jdxbgxb.20230119

Previous Articles     Next Articles

Optimization model of distribution network system by considering multi⁃types distributed power generation

Wen-bin HAO(),Zhi-gao MENG(),Yong ZHANG,Bo XIE,Ling-yun HE,Pan PENG,Yan TU,Yi-ming HU   

  1. Chengdu Power Supply Company,State Grid Sichuan Electric Power Company,Chengdu 610021,China
  • Received:2023-02-09 Online:2024-12-01 Published:2025-01-24
  • Contact: Zhi-gao MENG E-mail:hwb760817@163.com;mengzhigao718@163.com

Abstract:

In order to improve the power supply reliability of the distribution network system, solve the current problems of insufficient power supply and high production cost, an annual power balance analysis was conducted for the distribution network system with hybrid power sources. First, the scene tree generation method was used to sample and select the wind power, photovoltaic, and load data within the year. Three typical days were selected in each month according to the probability principle to reflect the characteristics of wind and wind power generation and load throughout the year. Secondly, considering the operating constraints of wind and solar power plants, gas turbine units, batteries, and continuous and discrete reactive power compensation devices, an optimization model of the distribution network system was established to minimize with the goal of minimizing the annual operating cost. The optimization solution problem is a second-order cone programming model. The Yalmip optimization solution tool was used to model the distribution network system, and the Gurobi solver was used to solve the power balance problem of each typical day. Based on the solar radiation, temperature, wind speed, power load of Chengdu, the design example of the IEEE 33-node distribution network system is used to finally realize the production capacity distribution and economic analysis of the annual power balance.

Key words: power balance, distribution network planning, wind power and photovoltaic power, scene analysis

CLC Number: 

  • TM734

Fig.1

Typical daily load output curves of photovoltaic, wind power and electric load in February"

Fig.2

Branch power flow model"

Fig.3

Algorithmic solution process"

Fig.4

IEEE 33 bus system"

Table 1

Typical daily production in February"

典型日

场景

概率

光伏产能/ (MW·h-1风机产能/ (MW·h-1

燃气轮机

产能/(MW·h-1

10.428 578.966 10.160 719.257 1
20.392 8610.093 40.154 618.013 7
30.178 578.942 30.311 118.910 5

Table 2

Typical daily production in June"

典型日

场景

概率

光伏产能/ (MW·h-1风机产能/ (MW·h-1燃气轮机产能/(MW·h-1
10.115.356 10.369 624.398 6
20.533 3315.397 20.204 925.518 4
30.366 6714.390 80.370 438.963 8

Table 3

Typical daily production in December"

典型日

场景

概率

光伏产能/ (MW·h-1风机产能/ (MW·h-1燃气轮机产能/(MW·h-1
10.354 846.989 90.449 322.396 9
20.483 877.186 50.428 121.540 0
30.161 297.238 00.388 521.605 7

Fig.5

Typical daily energy production ratio"

Fig.6

Typical daily battery state of charge"

Table 4

Typical daily economic operation costs"

月份

风机发电

成本/元

光伏发电

成本/元

蓄电池运行成本/元燃气轮机运行成本/元总成本/元
运维成本/元

污染气体治理

成本/元

燃料成本/元

污染气体治理

成本/元

全年9 565.21334 866.37160 441.971 298.16 527 902.767 779 819.917 883 894.25
2153.1121 066.5814 035.436 237.14389 695.8246 552.5477 504.94
6113.3636 058.60473.19210.2778677 102.8984 349.5794 613.81
12704.717 670.151 454.52646.37504 051.6360 214.1584 741.47

Fig.7

Typical daily electricity production and consumption"

Table 5

Annual production capacity and economic comparison"

机组产能/MW成本/元
光伏4 185.83334 866.4
风机170.539 565.21
燃气轮机8 774.147 307 722.7
1 国家能源局. 国家能源局组织召开 2023年2月份全国可再生能源开发建设形势分析会[EB/OL]. [2023-3-20]. .
2 白建华,辛颂旭,刘俊,等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015(14): 3699-3705.
Bai Jian-hua, Xin Song-xu, Liu Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015(14): 3699-3705.
3 陈松利,田德,孙云峰,等. 离网型户用风光互补发电系统的匹配[J]. 吉林大学学报:工学版,2012, 42(4): 882-886.
Chen Song-li, Tian De, Sun Yun-feng, et al. Matching for wind-solar hybrid power system for off-net household[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 882-886.
4 李明节,陈国平,董存,等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986.
Li Ming-jie, Chen Guo-ping, Dong Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986.
5 王果,郭文凯,王长春. 配电网拓扑辨识研究综述及展望[J].吉林大学学报:工学版,2023, 53(2): 312-327.
Wang Guo, Guo Wen-kai, Wang Chang-chun. Overview and prospect of distribution network topology identification[J]. Journal of Jilin University (Engineering and Technology Edition),2023, 53(2): 312-327.
6 林哲,胡泽春,宋永华. 最优潮流问题的凸松弛技术综述[J]. 中国电机工程学报, 2019, 39(13): 3717-3727.
Lin Zhe, Hu Ze-chun, Song Yong-hua. Convex relaxation for optimal power flow problem: a recent review[J]. Proceedings of the CSEE,2019, 39(13): 3717-3727.
7 何天雨,卫志农,孙国强,等. 基于网损等值负荷模型的改进直流最优潮流算法[J]. 电力系统自动化, 2016, 40(6): 58-64.
He Tian-yu, Wei Zhi-nong, Sun Guo-qiang, et al. Modified direct current optimal power flow algorithm based on net loss equivalent load model[J]. Automation of Electric Power Sysytems, 2016, 40(6): 58-64.
8 汤晓青,刘辉,范宇,等. 基于改进多目标遗传算法的实时发电市场优化调度研究[J]. 电力系统保护与控制,2017, 45(17): 65-71.
Tang Xiao-qing, Liu Hui, Fan Yu, et al. Analysis of the optimal dispatch in real-time generation market using an improved multi-objective genetic algorithm[J]. Power System Protection and Control,2017, 45(17): 65-71.
9 蔡博,黄少锋. 基于多目标粒子群算法的高维多目标无功优化[J]. 电力系统保护与控制,2017, 45(15): 77-84.
Cai Bo, Huang Shao-feng. Multi-objective reactive power optimization based on the multi-objective particle swarm optimization algorithm[J]. Power System Protection and Control, 2017, 45(15): 77-84.
10 付光杰,曹旭. 含CCHP及储能的微网建模及经济运行优化研究[J]. 吉林大学学报:信息科学版,2022, 40(3): 339-346.
Fu Guang-jie, Cao Xu. Research on micro grid modeling and economic operation optimization with CCHP and energy storage[J]. Journal of Jilin University (Information Science Edition), 2022,40(3):339-346.
11 汤京永. 二阶锥规划的若干算法研究[D]. 上海:上海交通大学数学科学学院, 2012.
Tang Jing-yong. Studies on some algorithms for second-order cone programming[D].Shanghai: School of Mathematical Sciences, Shanghai Jiao Tong University, 2012.
12 陈怀毅,胡英坤,杨毅,等. 二阶锥松弛在配电网最优潮流计算中的应用[J]. 应用研究, 2020, 39(1): 49-54.
Chen Huai-yi, Hu Ying-kun, Yang Yi, et al. Application of second order cone relaxation in optimal power flow calculation of distribution network[J]. Applocation Research, 2020, 39(1): 49-54.
13 刘一兵,吴文传,张伯明,等. 基于混合整数二阶锥规划的主动配电网有功–无功协调多时段优化运行[J]. 中国电机工程学报, 2014, 34(16): 2575-2583.
Liu Yi-bing, Wu Wen-chuan, Zhang Bo-ming, et al. A mixed integer second-order cone programming based active and reactive power coordinated multi-period optimization for active distribution network[J]. Proceedings of the CSEE, 2014, 34(16): 2575-2583.
14 高红均,刘俊勇,沈晓东,等. 主动配电网最优潮流研究及其应用实例[J]. 中国电机工程学报, 2017, 37(6): 1634-1644.
Gao Hong-jun, Liu Jun-yong, Shen Xiao-dong, et al. Optimal power flow research in active distribution network and its application examples[J]. Proceedings of the CSEE, 2017, 37(6): 1634-1644.
15 叶晖,李爱魁,张忠. 基于储能的无功补偿技术综述[J]. 储能科学与技术, 2021, 10(6): 2209-2217.
Ye Hui, Li Ai-kui, Zhang Zhong. Overview of reactive power compensation technology based on energy storage[J]. Energy Storage Science and Technology, 2021, 10(6): 2209-2217.
16 凌鹏飞. 混合型无功补偿装置在配电网中的应用[J]. 电力与能源, 2013, 34(2): 152-154.
Ling Peng-fei. Mixed reactive compensation device in the application of distribution network[J]. Power and Energy,2013, 34(2): 152-154.
17 龚莉强. 自动化无功补偿技术的应用[J]. 集成电路应用. 2022, 39(10): 106-107.
Gong Li-qiang. Application of automatic reactive power compensation technology[J]. Applications, 2022, 39(10): 106-107.
18 张瑜. 基于混合无功补偿系统的风电并网研究[D].西安: 陕西理工大学电气工程学院, 2021.
Zhang Yu. Research on grid connection of wind power based on hybrid reactive power compensation system[D]. Xi´an:School of Electrical Engineering, Shaanxi University of Technology, 2021.
19 马苗苗,刘立成,王鑫,等. 风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报:工学版,2022, 52(9): 2096-2106.
Ma Miao-miao, Liu Li-cheng, Wang Xin,et al. Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles[J]. Journal of Jilin University (Engineering and Technology Edition),2022, 52(9): 2096-2106.
20 高金兰,王良禹,宋爽.基于改进黏菌算法的配电网重构研究[J].吉林大学学报:信息科学版,2022, 40(5): 759-766.
Gao Jin-lan, Wang Liang-yu, Song Shuang. Distribution network reconfiguration method based on improved slime mould algorithm[J]. Journal of Jilin University (Information Science Edition), 2022,40(5): 759-766.
[1] LI Hong-yan, QU Jun-ling, ZHANG Xue-ying. Voiced speech blind signal separation algorithm based on signal energy [J]. 吉林大学学报(工学版), 2015, 45(5): 1665-1670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .