Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3711-3716.doi: 10.13229/j.cnki.jdxbgxb.20231307

Previous Articles     Next Articles

Dynamic attitude stability control method for biped walking robot based on differential equations of motion

Chun-yan ZHAO(),Jing-chun PENG   

  1. College of Science,Heilongjiang University of Science and Technology,Harbin 150022,China
  • Received:2023-11-28 Online:2024-12-01 Published:2025-01-24

Abstract:

In order to maintain a stable dynamic posture during the operation of biped walking robots and complete work tasks with high efficiency, a motion differential equation based dynamic posture stabilization control method for biped walking robots was proposed. Firstly,establish a biped walking robot model, determine its coordinates in the world coordinate system and rigid coordinate system, and express them in the form of homogeneous coordinates; Secondly,the dynamic attitude stability controller of biped walking robot is constructed, and the differential equation of motion is introduced to constrain the dynamic attitude of the robot, so that it can remain stable in any constrained surface;Finally,compared with the other two algorithms, the experimental results show that the proposed method is highly feasible and reasonable. Compared with other algorithms, the proposed method has better self-balancing ability, anti-interference ability and dynamic attitude stability control ability.

Key words: differential equations of motion, dynamic attitude stability control, rigid body coordinate system, world coordinate system, constrain surfaces

CLC Number: 

  • TP25

Fig.1

Biped walking robot model"

Fig.2

Schematic diagram of the pose coordinates of the linkage motion of a bipedal walking robot"

Fig.3

Comparison results of inclination angle errors among three algorithms"

Fig.4

Anti interference recovery time of three algorithms"

Fig.5

Schematic diagram of experimental slope environment"

Fig.6

Inclination amplitude of three algorithms in a slope environment"

1 吴晓光, 刘绍维, 杨磊, 等. 基于深度强化学习的双足机器人斜坡步态控制方法[J]. 自动化学报, 2021, 47(8): 1976-1987.
Wu Xiao-guang, Liu Shao-wei, Yang Lei,et al. A gait control method for biped robot on slope based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(8): 1976-1987.
2 廖发康, 周亚丽, 张奇志. 变长度柔性双足机器人行走控制及稳定性分析[J]. 计算机应用, 2023, 43(1): 312-320.
Liao Fa-kang, Zhou Ya-li, Zhang Qi-zhi. Walking control and stability analysis of flexible biped robot with variable length legs[J]. Journal of Computer Applications, 2023,43(1): 312-320.
3 尹孟可, 郭士杰, 孙磊, 等. 下肢步行助力外骨骼机器人的模糊自适应PID控制[J]. 机械设计, 2021, 38(9): 38-44.
Yin Meng-ke, Guo Shi-jie, Sun Lei, et al. Fuzzy adaptive PID control of the lower-limb walking-assistance exoskeleton robot[J]. Journal of Machine Design, 2021,38(9): 38-44.
4 于晓春, 贾骏恺, 李化洋, 等.六足机器人半被动行走步态控制方法及其动力学仿真[J]. 机械设计与研究, 2022, 38(1): 55-61.
Yu Xiao-chun, Jia Jun-kai, Li Hua-yang, et al. Research on the control method and dynamic simulation of semi-passive walking gait of hexapod robot[J]. Machine Design & Research, 2022, 38(1): 55-61.
5 刘莹, 邵彧.利用姿态传感器多点位控制机器人交互方法[J].机械设计与制造, 2023(2): 266-269.
Liu Ying, Shao Yu. Multi-point control robot interaction method using attitude sensor[J]. Machinery Design & Manufacture, 2023(2): 266-269.
6 钟浩然, 李新宇, 高亮, 等.适应非平整地面的双足机器人柔顺步态优化方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(7): 97-102.
Zhong Hao-ran, Li Xin-yu, Gao Liang, et al. Gait planning optimization method for biped robots compliant walking on uneven terrain[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 97-102.
7 周友行,赵晗妘,刘汉江,等.采用DDPG的双足机器人自学习步态规划方法[J].计算机工程与应用,2021, 57(6): 254-259.
Zhou You-xing, Zhao Han-yun, Liu Han-jiang, et al. Self-Learning gait planning method for biped robot using DDPG[J]. Computer Engineering and Applications, 2021, 57(6): 254-259.
8 艾青林, 蒋锦涛, 刘刚江, 等. 基于遗传算法与模糊分数阶PID的钢结构损伤检测机器人姿态控制[J].高技术通讯, 2022, 32(6): 615-623.
Ai Qing-lin, Jiang Jin-tao, Liu Gang-jiang, et al. Attitude control of steel structure damage detection robot based on genetic algorithm and fuzzy fractional PID[J]. Chinese High Technology Letters, 2022, 32(6): 615-623.
9 张德伟, 刘海涛, 王仙业, 等.一种足式移动机器人的混合视觉伺服控制方法[J].机械科学与技术, 2022, 41(12): 1805-1814.
Zhang De-wei, Liu Hai-tao, Wang Xian-ye, et al. Hybrid visual servoing control of a legged mobile robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022,41(12):1805-1814.
10 王敏, 蒋金伟, 曹彦陶. 基于改进粒子群的食品分拣机器人动态目标抓取控制方法[J]. 食品与机械, 2022, 38(3): 86-91.
Wang Min, Jiang Jin-wei, Cao Yan-tao. Dynamic target grasping control method of food sorting robot based on improved particle swarm optimization[J]. Food and Machinery, 2022,38(3):86-91.
11 Ma, B, Li Y C, An T J,et al.Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games[J].Knowledge-based Systems,2021,224(7):107100.1-107100.14.
12 Hartmann V N, Orthey A, Driess D,et al.Long-Horizon multi-robot rearrangement planning for construction assembly[J].IEEE Transactions on Robotics: A Publication of the IEEE Robotics and Automation Society, 2023, 39(1): 239-252.
13 Wang N, Xiang X, Jiang Y,et al.Modelling and vibration control for deep-sea robot lifting system with time variable length and nonlinear disturbance observer[J].Ocean Engineering, 2022, 246(2):No.110558.
14 Liu Y Q, Liu X F, Cai G P, et al.Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase[J].Multibody System Dynamics,2021,52(3):281-311.
15 Zhi Q T, Ho L H, Kai Y T,et al.Model-based online learning and adaptive control for a "human-wearable soft robot" integrated system[J].International Journal of Robotics Research,2021, 40(1): 256-276.
16 Chen L, Liu J, Wang H,et al.Robust control of reaction wheel bicycle robot via adaptive integral terminal sliding mode[J].Nonlinear Dynamics,2021,104(4): No.4753.
17 Yan, Z P, Yang H Y, Zhang W,et al.Robust nonlinear model predictive control of a bionic underwater robot with external disturbances[J].Ocean Engineering,2022, 253(1): No.111310.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .