Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2393-2400.doi: 10.13229/j.cnki.jdxbgxb.20231159

Previous Articles    

Experimental on mechanical properties of simulated Mars soil crust and its crusting

Zhao-long DANG1(),Meng ZOU2,Jia-feng SONG2,Bai-chao CHEN1,Yan SHEN2,Ying-chun QI2()   

  1. 1.Institute of Spacecraft System Engineering,CAST,Beijing 100094,China
    2.Key Lab. for Bionics Engineering of Education Ministry,Jilin University,Changchun 130022,China
  • Received:2023-10-26 Online:2024-08-01 Published:2024-08-30
  • Contact: Ying-chun QI E-mail:dangzhaolong@126.com;qiyc@jlu.edu.cn

Abstract:

Except the loose soil on the surface of Mars, there is a kind of special type of soil names Crusty-cloddy, where the ground surface is brittleness and the underlying is loose sand. That is deceptive for Mars Rover. This article take theMars-1and Mars-3 simulant Mars soil as the raw material, to formed hard-shell structures under the nature dry, then studied on the mechanics of these crust, the results showed that the crust of fine particles Mars-1 soil is best when the liquor is saturated NaCl, which has the biggest area, strongly integrity and small thickness; while the Mars-3 crusted the best when liquor is 10% MgSO4, which has a small area, large thickness but weak integrity. The crusting velocity of Mars-1 is faster than that of Mars-3. Concerning about loading properties, the peak broken force for crust of Mars-1 decreased with the increasing of the concentration of NaCl but increased with the increasing of the concentration of MgSO4. Two kinds of crust have the biggest penetration resistance under the liquor of 10%NaCl. For Mars-1, the penetration resistance increases with the increasing of the concentration of NaCl but decreases with the increasing of the concentration of MgSO4.The above research can provide the reference and basis for the planet ramp mechanism optimization design and performance evaluation.

Key words: simulated mars soil, hard-shell structure, load-bearing properties, trafficability

CLC Number: 

  • V476.4

Fig.1

Mars soil simulant for experiment"

Fig.2

Crusting experiment of Mars-1"

Fig.3

Comparison of crusting between two simulant soils"

Table 1

Thickness of crust under various liquor mm"

土样溶液样本点1样本点2样本点3样本点4平均值
Mars-1蒸馏水3.146.086.804.525.135
10%NaCl4.024.625.328.625.645
饱和NaCl3.725.127.667.966.115
10%MgSO43.704.744.529.605.640
饱和MgSO47.029.9210.0011.389.580
Mars-3蒸馏水7.368.248.9410.288.705
10% NaCl8.349.229.529.169.060
10% MgSO47.427.8610.7011.689.415

Fig.4

Phoenix fire shovel digging soil sampling"

Fig.5

Situation of ground simulation"

Table.2

Drying time under various liquor"

溶液Mars-1Mars-3
蒸馏水21.524
10%NaCl2225.5
饱和NaCl23
10%MgSO42427.5
饱和MgSO425.5

Fig.6

Experimental process of plate loading test for Mars-3"

Fig.7

Force-displacement curves of Mars-1"

Fig.8

Force-displacement curves of Mars-3"

Table.3

Peak force of soil crust for Mars-1 and Mars-3"

溶液直径60 mm直径80 mm
Mars-1Mars-3Mars-1Mars-3
蒸馏水1.413.8811.886.21
10%NaCl3.094.6713.345.80
10% MgSO41.765.2112.046.51

Table.4

Peak force of soil crust of Mars-1"

直径/mmNaCl溶液MgSO4溶液
10%饱和10%饱和
603.091.251.762.62
709.104.313.136.19
8013.344.9312.0413.52

Fig.9

Penetration resistance test for crusting"

Fig.10

Penetration resistance curves of Mars-1 soil crust"

Fig.11

Penetration resistance curves of Mars-3 soil crust"

Fig.12

Penetration resistance curves of Mars-1 soil crust"

Fig.13

Sinkage experimental of Mars rover on soil crust"

Fig.14

Power and Current Intensity curves of Mars rover during trips on two crust soil"

1 吴伟仁, 刘旺旺, 唐玉华, 等. 深空探测几项关键技术及发展趋势[J]. 国际太空, 2013, 420(12): 45-51.
Wu Wei-ren, Liu Wang-wang, Tang Yu-hua, et al. Development trends of deep space exploration and several key technologies[J]. Space Exploration, 2013, 420(12): 45-51.
2 李超, 董治宝, 吕萍, 等. 火星沙丘地貌的形态学窥究[J]. 科学通报, 2020, 65(1): 80-90.
Li Chao, Dong Zhi-bao, Ping Lyu, et al. A morphological insight into the Martian dune geomorphology[J]. Chinese Science Bulletin, 2020, 65(1): 80-90.
3 Wong J Y. Terr Mechanics and Off-road Vehicles[M]. Amsterdam: Elsevier Science Publishers, 1989.
4 Greeley R, Squyres S W, Arvidson R E, et al. Wind-related processes detected by the spirit rover at gusev crater, mars[J]. Science, 2004, 305: 810-813.
5 Hannan M, Rickman D, Chavers G, et al. Flight testing of guidance, navigation and control systems on the mighty eagle robotic lander test bed[C]∥ AIAA SciTech 2015, Kissimmee, USA, 2015: 20150002955.
6 Yuan B, Wang C, Zou M, et al. Experimental study on the durability of China's Mars rover's mobility system[J]. Journal of Aerospace Engineering, 2021, 34(5): 0001292.
7 Team R. Characterization of the martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278: 1765-1768.
8 Sheehan W, Bell J. Discovering Mars: a history of observation and exploration of the red planet[J]. University of Arizona Press, 2021, 2: 102307.
9 蒋明镜, 戴永生, 张熇, 等. TJ-1 模拟月壤承载特性的现场试验研究[J]. 岩土力学, 2013, 34(6): 1529-1535.
Jiang Ming-jing, Dai Yong-sheng, Zhang He, et al. Field experimental research on bearing properties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2013, 34(6): 1529-1535.
10 Hudson T L, Aharonson O. Diffusion barriers at Mars surface conditions: salt crusts, particle size mixtures, and dust[J]. Journal of Geophysical Research, 2008, 113(9): 003026.
11 薛龙,党兆龙,陈百超,等. 面向火星着陆器 缓冲试验的模拟火壤力学特性分析[J]. 吉林大学学报: 工学版, 2019, 49(1): 176-186.
Xue Long, Dang Zhao-long, Chen Bai-chao, et al. Terra-mechanics of Mars soil for martian lander's landing tests[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 176-186.
12 李建桥,薛龙,邹猛,等.已有模拟火壤力学性质分析及新火星壤研制[J]. 吉林大学学报: 工学版,2016, 46(1): 172-178.
Li Jian-qiao, Xue Long, Zou Meng, et al. Terra-mechanics characters and development of martian simulant regolith[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(1): 172-178.
13 Westall F, Coates A J, Korablev O, et al. Habitability on early Mars and the search for biosignatures with the exomars rover[J]. Astrobiology, 2017, 17(6/7): 471-510.
14 Sullivan R, Anderson R, Biesiadecki J, et al. Cohesions, friction angles, and other physical properties of martian regolith from Mars exploration rover wheel trenches and wheel scuffs[J]. Journal of Geophysical Research: Planets, 2011, 116(2): 2010JE02006.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .