Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 1050-1060.doi: 10.13229/j.cnki.jdxbgxb.20230618

Previous Articles    

Dynamic authentication protocol for mobile edge computing scenarios

Shu-xu ZHAO(),Zhi-chao SUN,Xiao-long WANG   

  1. School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2023-06-16 Online:2025-03-01 Published:2025-05-20

Abstract:

For the cross-domain authentication problem of mobile users in mobile edge computing, we proposed a dynamic authentication framework consisting of three secure authentication models, which provides security and efficient authentication. Built on the authentication framework, a lightweight authentication protocol based on elliptic curve encryption, an edge-centric security authentication protocol, is designed. The protocol ensures the anonymity and untraceability of mobile users and their mutual authentication with edge servers. Security analysis and performance evaluation show that the proposed protocol has better performance advantages in both computational and communication cost and is more suitable for mobile scenarios.

Key words: computer system architecture, mobile edge computing, dynamic identity authentication, mobile edge server, elliptic curve cryptography, user anonymity

CLC Number: 

  • TP309

Table 1

Symbol definition"

符号含义
RC可信的注册中心
UUiUj移动用户
MS,MS-A,MS-B移动边缘服务器
G乘法循环群
PG的生成元
ID u移动用户的身份标识
SID u移动用户的匿名身份
h安全的哈希函数
Ppubs注册中心的公私钥对
Ruru移动用户的公私钥对
Rmsrms移动边缘服务器的公私钥对
Trans_num交易号
KUij用户UiUj 之间的共享密钥
KMS-AB边缘服务器A和B之间的共享密钥

Fig.1

Device-centric security authentication model"

Fig.2

Edge-centric security authentication model"

Fig.3

End-to-end security authentication model"

Fig.4

Mobile user registration steps"

Fig.5

Mobile edge server registration steps"

Fig.6

Authentication phase"

Table 2

Running time of five basic operations"

仿真平台TbpTmTeTaTh
云平台5.2751.970.3390.0120.009
手机25.51711.4911.680.0690.047

Table 3

Computational cost comparison"

方案移动用户端(U移动边缘服务器端(MS)
文献[19

5Tm+2Ta+Te+

5Th≈59.508

5Tbp+2Tm+2Ta+

2Te+5Th≈15.237

文献[20

Tbp+5Tm+2Ta+

6Te+6Th≈86.752

2Tbp+4Tm+3Ta+

2Te+3Th≈19.171

文献[214Tm+4Th≈46.1523Tm+4Th≈5.946
文献[22

4Tm+3Ta+Te+

5Th≈48.086

Tbp+5Tm+3Ta+

5Th≈15.206

文献[23

6Tm+Ta+Te+

5Th≈70.93

Tbp+4Tm+2Th+

≈13.173

本文3Tm+Th≈34.523Tm+Th≈5.919

Fig.7

Computational cost comparison under different execution times"

Table 4

Communication cost comparison"

方案通信成本数据长度/bit
文献[193|G|+|GT|+|H|+|ID|4 680
文献[204|G|+|GT|+|H|+|ID|5 632
文献[212|G|+2|T|+2|H|2 624
文献[224|G|+2|T|+2|Zq*|+|ID|4 736
文献[233|G|+4|Zq*|+2|T|3 776
本文3|G|+3|G|+|H|+|ID|3 680

Fig.8

Communication cost comparison"

1 施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924.
Shi Wei-song, Sun Hui, Cao Jie, et al. Edge computing—an emerging computing model for the internet of everything era [J]. Journal of Computer Research and Development, 2017, 54(5): 907-924.
2 Shi W, Cao J, Zhang Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
3 谢人超, 廉晓飞, 贾庆民, 等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39(11): 138-155.
Xie Ren-chao, Lian Xiao-fei, Jia Qing-min, et al. Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39(11): 138-155.
4 Hu Y C, Patel M, Sabella D, et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015, 11(11): 1-16.
5 Dinh H T, Lee C, Niyato D, et al. A survey of mobile cloud computing: architecture, applications, and approaches[J]. Wireless Communications and Mobile Computing, 2013, 13(18): 1587-1611.
6 Cau E, Corici M, Bellavista P, et al. Efficient exploitation of mobile edge computing for virtualized 5G in EPC architectures[C]∥4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 2016: 100-109.
7 Jararweh Y, Doulat A, AlQudah O, et al. The future of mobile cloud computing: integrating cloudlets and mobile edge computing[C]∥23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 2016: 1-5.
8 Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6): 45-55.
9 Hassan N, Yau K L A, Wu C. Edge computing in 5G: a review[J]. IEEE Access, 2019, 7: 127276-127289.
10 朱思峰, 赵明阳, 柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报: 工学版, 2022, 52(11): 2698-2705.
Zhu Si-feng, Zhao Ming-yang, Chai Zheng-yi. Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2698-2705.
11 Wang X L, Dang J W, Zhao S X, et al. Coalition structure generation in edge computing environment with multitasking concurrency[J]. IEEE Internet of Things Journal, 2023, 10(5): 4324-4338.
12 张开元, 桂小林, 任德旺, 等. 移动边缘网络中计算迁移与内容缓存研究综述[J]. 软件学报, 2019, 30(8): 2491-2516.
Zhang Kai-yuan, Gui Xiao-lin, Ren De-wang, et al. Survey on computation offloading and content caching in mobile edge networks[J]. Journal of Software, 2019, 30(8): 2491-2516.
13 Ranaweera P, Jurcut A D, Liyanage M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078-1124.
14 Irshad A, Chaudhry S A, Alomari O A, et al. A novel pairing-free lightweight authentication protocol for mobile cloud computing framework[J]. IEEE Systems Journal, 2021, 15(3): 3664-3672.
15 Amanlou S, Hasan M K, Bakar K A A. Lightweight and secure authentication scheme for IoT network based on publish-subscribe fog computing model[J]. Computer Networks, 2021, 199: No.108465.
16 Chatterjee U, Ray S, Khan M K, et al. An ECC-based lightweight remote user authentication and key management scheme for IoT communication in context of fog computing[J]. Computing, 2022, 104(6): 1359-1395.
17 Wang C, Huang R, Shen J, et al. A novel lightweight authentication protocol for emergency vehicle avoidance in VANETs[J]. IEEE Internet of Things Journal, 2021, 8(18): 14248-14257.
18 Rawat G S, Singh K, Arshad N I, et al. A lightweight authentication scheme with privacy preservation for vehicular networks[J]. Computers and Electrical Engineering, 2022, 100: No.108016.
19 Tsai J L, Lo N W. A privacy-aware authentication scheme for distributed mobile cloud computing services[J]. IEEE Systems Journal, 2015, 9(3): 805-815.
20 Irshad A, Sher M, Ahmad H F, et al. An improved multi-server authentication scheme for distributed mobile cloud computing services[J]. KSII Transactions on Internet and Information Systems (TIIS), 2016, 10(12): 5529-5552.
21 Kaur K, Garg S, Kaddoum G, et al. A lightweight and privacy-preserving authentication protocol for mobile edge computing[C]∥IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1-6.
22 Jia X, He D, Kumar N, et al. A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing[J]. IEEE Systems Journal, 2020, 14(1): 560-571.
23 Li Y, Cheng Q, Liu X, et al. A secure anonymous identity-based scheme in new authentication architecture for mobile edge computing[J]. IEEE Systems Journal, 2021, 15(1): 935-946.
24 薛建彬, 白子梅. 边缘计算中移动终端安全高效认证协议[J]. 北京邮电大学学报, 2021, 44(1): 110-116.
Xue Jian-bin, Bai Zi-mei. Security and efficient authentication scheme for mobile edge computing[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(1): 110-116.
25 余宜诚, 胡亮, 迟令,等. 一种单服务器环境下的匿名认证协议[J]. 吉林大学学报: 工学版, 2021, 51(2): 659-666.
Yu Yi-cheng, Hu Liang, Chi Ling, et al. An anonymous authentication protocol for single⁃server architectures[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 659-666.
26 Mao Y, You C, Zhang J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
27 Tran T X, Hajisami A, Pandey P, et al. Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges[J]. IEEE Communications Magazine, 2017, 55(4): 54-61.
28 Burrows M, Abadi M, Needham R. A logic of authentication[J]. ACM Transactions on Computer Systems (TOCS), 1990, 8(1): 18-36.
[1] Bin-bin YU,Liang HU,Ling CHI. Digital signature scheme against internal and external attack for wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1676-1681.
[2] YU Yi-cheng, HU Liang, CHI Ling, CHU Jian-feng. Improved anonymous authentication protocol for multi-server architectures [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1586-1592.
[3] HAO Ping-ting, HU Liang, JIANG Jing-yan, CHE Xi-long. Optimistic lock protocol of multi-managed nodes [J]. 吉林大学学报(工学版), 2017, 47(1): 227-234.
[4] WEI Xiao-hui, LIU Zhi-liang, ZHUANG Yuan, LI Hong-liang, LI Xiang. Adaptive checkpoint mechanism supporting large-scale stream data processing [J]. 吉林大学学报(工学版), 2017, 47(1): 199-207.
[5] ZHANG Yi-wen,GUO Rui-feng. Low-power scheduling algorithm for mixed task in real-time system [J]. 吉林大学学报(工学版), 2015, 45(1): 261-266.
[6] ZHANG Yi-wen, GUO Rui-feng. Fault-tolerant energy-saving scheduling algorithm base on checkpoint scheme [J]. 吉林大学学报(工学版), 2014, 44(4): 1112-1117.
[7] HE Zhong-zheng, MEN Chao-guang, LI Xiang. Schedulability of fault-tolerant real-time system based on checkpoint interval optimization [J]. 吉林大学学报(工学版), 2014, 44(2): 433-439.
[8] Pang Shi-chun, Liu Shu-fen . A publicly verifiable vector space secret sharing scheme [J]. 吉林大学学报(工学版), 2008, 38(01): 123-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!