Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1443-1452.doi: 10.13229/j.cnki.jdxbgxb.20230656

Previous Articles     Next Articles

Solving method on inverse kinematics of mobile loading missile manipulator by multi-population grey wolf optimization algorithm

Yun-feng HU1,2(),Jia-min LI2,Zhi-guo TANG2()   

  1. 1.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2023-06-25 Online:2025-04-01 Published:2025-06-19
  • Contact: Zhi-guo TANG E-mail:huyf@jlu.edu.cn;tangzhiguo@jlu.edu.cn

Abstract:

Aiming at the problem that the inverse kinematics performance of the mobile loading manipulator needs to be improved, an inverse kinematics solution method based on the multi-population gray wolf algorithm is proposed. Firstly, the inverse kinematics problem of the mobile loading manipulator is transformed into an equivalent optimal problem, and the fitness function is established according to the optimization objective. Secondly, based on the gray wolf algorithm, the grey wolf population is expanded, the particle swarm algorithm and the position updating method of the optimal individual inverse guidance are introduced, and the random reorganization threshold elimination mechanism is set. Then, the algorithm is applied to iteratively invert so that the fitness function approaches 0 to obtain the inverse solution. Finally, the simulation comparison with other solving methods shows that the proposed method has better convergence, solution accuracy and repeatability.

Key words: control science and control engineering, mobile loading missile manipulator, kinematic inversion, multi-population grey wolf optimization algorithm, fitness function

CLC Number: 

  • TP241

Fig.1

Schematic diagram of structure of mobile loading missile manipulator"

Fig.2

Schematic diagram of the working process of mobile loading missile manipulator"

Fig.3

Diagram of coordinate system"

Fig.4

Angle limitation in the folded state"

Table 1

Parameters of mobile loading missile manipulator"

描述符号单位数值
杆1长度l1m1.74
杆2长度l2m2.5
杆3长度l3m3
伸缩杆长度Dm1.5
连杆7长度l7m0.8
吊具长度l8m1.2

Fig.5

Three-dimensional working space diagram of mobile loading missile manipulator"

Fig.6

Schematic diagram of algorithm improvement"

Fig.7

Flow chart of proposed algorithm"

Table 2

Test function"

测试函数定义域最小值
f1x=i=130xi2[-100,100]0
f2x=i=130xi+?i=130xi[-10,10]0
f3x=i=130xi2-10cos2πxi+10[-5.12,5.12]0
f4x=-i=14ci·exp-j=13aijxj-pij213-3.86

Fig.8

Test function average fitness optimization convergence curve"

Table 3

Test function solving index statistics"

函数算法平均值最优值最差值方差
F1GWO9.384?6×10-96.885?9×10-104.367?6×10-88.728?6×10-17
MGWO5.894?1×10-141.098?8×10-141.755?7×10-131.304?5×10-27
F2GWO6.755?2×10-62.377?7×10-61.861?6×10-51.081?1×10-11
MGWO5.162?6×10-92.010?2×10-97.955?5×10-91.804?7×10-18
F3GWO14.747?97.767?6×10-633.462 260.446 2
MGWO1.304?61.690?0×10-106.207 62.722 1
F4GWO-3.860?9-3.862?807.197?2×10-6
MGWO-3.862?8-3.862?803.592?7×10-11

Fig.9

Single-point repetitive localization average adaptation optimization convergence curve"

Fig.10

Single-point repetitive positioning adaptation function curve"

Table 4

Statistics of solving index by algorithm"

算法平均值最优值最差值方差
GWO0.429 20.011 51.061 31.061 3
VAGWO1.004 38.036?2×10-56.205 36.205 3
PGWO0.398 60.001 52.565 52.565 5
MGWO0.012 20.006 40.022 68.036?2×10-5

Fig.11

Random point positioning fitness function curve"

[1] 霍希建, 刘伊威, 姜力,等. 具有关节限位的7R仿人机械臂逆运动学优化[J]. 吉林大学学报: 工学版, 2016, 46(1): 213-220.
Huo Xi-jian, Liu Yi-wei, Jiang Li, et al. Inverse kinematics optimization of a 7R humanoid robot arm with joint limits [J]. Journal of Jilin University(Engineering and Technology Edition ), 2016, 46(1): 213-220.
[2] 石建平, 刘鹏, 陈冬云. 基于改进粒子群优化算法的冗余机械臂逆运动学求解[J]. 机械传动, 2021, 45(2): 69-75.
Shi Jian-ping, Liu Peng, Chen Dong-yun. Inverse kinematics of redundant manipulator based on improved particle swarm optimization algorithm[J]. Journal of Mechanical Transmission, 2021, 45(2): 69-75.
[3] 冷舒, 吴克, 居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报, 2019, 40(11): 1262-1273.
Leng Shu, Wu Ke, Ju He-hua, Kinematics modeling and calculating method of mechanical arm review [J]. Journal of Aerospace, 2019, 40(11): 1262-1273.
[4] Alkayyali M, Tutunji T A. PSO-based algorithm for inverse kinematics solution of robotic arm manipulators[C]∥20th International Conference on Research and Education in Mechatronics (REM),IEEE, Wels, Austria, 2019: 1-6.
[5] Ghosh A, Singh O, Ray A K. Inverse kinematic solution of a 7 DOF robotic manipulator using boundary restricted particle swarm optimization[J]. IFAC-PapersOnLine, 2022, 55(1): 101-105.
[6] Liu Y, Xi J, Bai H, et al. A general robot inverse kinematics solution method based on improved PSO algorithm[J]. IEEE Access, 2021, 9: 32341-32350.
[7] Gao R. Inverse kinematics solution of robotics based on neural network algorithms[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(12): 6199-6209.
[8] Nguyen T, Bui T, Pham H. Using proposed optimization algorithm for solving inverse kinematics of human upper limb applying in rehabilitation robotic[J]. Artificial Intelligence Review, 2022, 55(1): 679-705.
[9] Ahmed E S, Elhosseini M A, Haikal A Y. A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm[J]. Applied Soft Computing, 2018, 73: 24-38.
[10] 杨凯, 黄晋英. 一种8自由度空间机械臂运动学及工作空间分析[J]. 机械传动, 2021, 45(3): 147-152.
Yang Kai, Huang Jin-ying. Kinematics and workspace analysis of a 8-DOF space manipulator[J]. Mechanical Transmission, 2021, 45(3): 147-152.
[11] 张清松, 段帅臣, 夏热. 基于Matlab的拟人机械臂工作空间分析及仿真[J]. 机械传动, 2020, 44(12): 99-105.
Zhang Qing-song, Duan Shuai-chen, Xia Re. Workspace analysis and simulation of anthropomorphic robotic arm based on Matlab[J]. Mechanical Transmission, 2020, 44(12): 99-105.
[12] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[13] 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38.
Zhang Xiao-feng, Wang Xiu-ying, Review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46(3): 30-38.
[14] Rezaei F, Safavi H R, Abd Elaziz M, et al. An enhanced grey wolf optimizer with a velocity-aided global search mechanism[J]. Mathematics, 2022, 10(3):No.351.
[1] LIU Han-bing, WU Chun-li, CHENG Yong-chun. Sensor placement on bridge structure based on genetic algorithms with different fitness functions [J]. 吉林大学学报(工学版), 2012, 42(01): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .