›› 2012, Vol. ›› Issue (06): 1569-1575.

Previous Articles     Next Articles

Application of target-type FBG flow velocity sensor in fracture water model test

WANG Zheng-fang1, WANG Jing1, SUI Qing-mei1, LI Shu-cai2, ZHANG Qing-song2, ZHANG Xiao2   

  1. 1. College of Control Science and Engineering, Shandong University, Jinan 250061, China;
    2. Geotechnical Engineering Center, Shandong University, Jinan 250061, China
  • Received:2011-07-30 Online:2012-11-01

Abstract: Combining equal strength cantilever with Fiber Bragg Grating (FBG), a target-type FBG flow velocity sensor is developed to monitor the pipeline and the fracture flow velocity on-line. The force produced by flow works on the special shape target, then the level and cantilever structure transform the force into the wavelength shift of the FBG and the dual FBG structure is adopted to eliminate temperature effect. In order to determine the target force characteristics in the fracture and the equivalent pipeline diameter under equal force, finite element simulation is carried out using FLUENT6.3. Simulation results show that the velocity sensitivity of the sensor is 8.71?10-4 s2/m2 in the fracture at the flow section of 5 mm?2000 mm. The pipeline calibration experiments indicate that, in the measuring range of 0 m/s~1.20 m/s, the maximum error of the sensor is 0.02 m/s. The sensor is used in the drainage experiment of simple fracture water model. The results indicate the velocity increases when the inlet valve is enlarged. After the valve is turned on, the velocity in the rear drainage pipeline decreases. The trend of velocity change at the same section is in agreement with each other.

Key words: optoelectronics and laser technology, fiber Bragg grating, flow velocity sensor, model test, fracture water

CLC Number: 

  • TN253
[1] Lu Ping, Chen Qi-ying. Fiber bragg grating sensor for simultaneous measurement of flow rate and direction[J]. Meas Sci Technol,2008,19(12):1-8.
[2] Chen Jin-jie, Liu Bo, Zhang Hao. Review of fiber bragg grating sensor technology[J]. Frontiers of Optoelectronics in China,2011,4(2):204-212.
[3] 钱颖, 张鹰, 于永森,等. 基于特殊悬臂梁的光纤Bragg光栅应力传感器[J]. 吉林大学学报:工学版,2006, 36(5):757-760. Qian Ying, Zhang Ying, Yu Yong-sen,et al. Novel stress sensor of FBG on unique cantilever[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(5):757-760.
[4] 张向林, 陶果, 刘新茹. 光纤光栅温度自动补偿的位移调谐[J].吉林大学学报:理学版, 2006,44(4):634-636. Zhang Xiang-lin, Tao Guo, Liu Xin-ru. Displacement tuning of fiber bragg grating with temperature compensation[J]. Journal of Jilin University(Science edition),2006,44(4):634-636.
[5] Wei P, Pickrell G R, Huang Z Y,et al. Self-compensating fiber optic flow sensor system and its field applications[J]. Applied Optics, 2004,43(8):1752-1760.
[6] Cubukcu A S, Urban G A. Simulation and fabrication of a 2D-flow sensor for simultaneous fluid characterization[J]. Procedia Chemistry, 2009,1(1): 887-890.
[7] 禹大宽,乔学光,贾振安,等. 一种测量温度和流速的光纤光栅传感器[J]. 应用光学,2006,27(3):228-231. Yu Da-kuan, Qiao Xue-guang, Jia Zhen-an, et al. Fiber Bragg grating sensor for detecting temperature and flow-velocity[J]. Journal of Applied Optics,2006,27(3): 228-231.
[8] 陈建军,张伟刚,涂勤昌,等. 光纤光栅的高灵敏度流速传感器[J]. 光学学报,2006,26(8):1136-1139. Chen Jian-jun, Zhang Wei-gang, Tu Qin-chang, et al. High sensitivity flow velocity sensor based on fiber grating[J]. Acta Optica Sinica, 2006,26(8):1136-1139.
[9] 杨淑连,申晋,李田泽. 基于双光纤布拉格光栅的流速传感器[J]. 半导体光电,2009,30(5):759-762. Yang Shu-lian, Shen Jin, Li Tian-ze. Flow velocity sensor based on double fiber Bragg gratings[J]. Semiconductor Optoelectronics,2009, 30(5):759-762.
[10] 蔡守允,杨大明,朱其俊. 模型试验流速测量仪的分析研究[J]. 水资源与水利工程学报,2007,18(3):36-38. Cai Shou-yun, Yang Da-ming, Zhu Qi-jun. Study of velocity instruments by the model test[J]. Journal of Water Sources & Water Engineering,2007,18(3):36-38.
[11] 蔡守允, 张晓红. 水利工程模型试验量测技术的发展[J]. 水资源与水工程学报,2009,20(1):78-80. Cai Shou-yun, Zhang Xiao-hong. Development of the measuring technology in the model test of hydraulic engineering[J]. Journal of Water Resources& Water Engineering, 2009, 20(1):78-80.
[12] 刘钦东,杨达. ngg超声波流速测量仪精度的提高[J]. 制造业自动化, 2011(6):162-163. Liu Qin-dong, Yang Da. Ultrasonic flow meter accuracy improvement[J]. Manufacturing Automation,2011(6):162-163.
[13] 吴俊,丁甡奇,陈伟民. 基于光学互相关发的开放流场流速测量[J].仪表技术与传感器, 2009(9):68-70. Wu Jun, Ding Sheng-qi, Chen Wei-min. Flow velocity measurement technology for open fluid field based on optical cross correlation method[J]. Instrument Technique and Sensor, 2009(9):68-70.
[14] 吴俊,丁甡奇,余葵,等.光电非接触式表面流速测量[J]. 光学精密工程,2010,18(2):349-356. Wu Jun, Ding Sheng-qi, Yu Kui, et al. Non-contact measurement of surface flow velocity using photoelectric method[J]. Optics and Precision Engineering,2010,18(2):349-356.
[15] 王静,王正方,隋青美,等. FBG应变传感系统在巷道涌水模型试验中的研究[J]. 光电子·激光,2010,21(12):1768-1772. Wang Jing, Wang Zheng-fang, Sui Qing-mei, et al. Research of FBG strain system in laneway water inrush model test[J]. Journal of Optoelectronicso·Laser,2010, 21(12):1768-1772.
[16] 胡玉瑞,唐源宏,李川. 光纤Bragg光栅流量传感器[J].传感技术学报,2010,23(4):471-474. Hu Yu-rui, Tang Yuan-hong, Li Chuan. Fiber Bragg grating flow sensor[J]. Chinese Journal Of Sensors And Actuators,2010,23(4):471-474.
[17] 赵存友. 工程流体力学[M]. 哈尔滨:哈尔滨工业大学出版社,2010.
[18] Zhao Yong, Chen Kun, Yang Jian. Novel target type flowmeter based on a differential fiber Bragg grating sensor[J]. Measurement,2005,38(3):230-235.
[19] 张有天. 岩石水力学工程[M].北京:中国水利水电出版社,2005.
[1] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[2] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[3] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[4] SU Ying-she,YANG Yuan-yuan. Analysis of load transfer ratio of soil arching in sparse row piles [J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[5] CHEN Chen, DANG Jing-min, HUANG Jian-qiang, WANG Yi-ding. DFB laser temperature control system with high stability and strong robustness [J]. 吉林大学学报(工学版), 2013, 43(04): 1004-1010.
[6] CHEN Chen,HUANG Jian-qiang,LV Mo,DANG Jing-min,WANG Yi-ding. High-precision narrow pulse drive power for infrared quantum cascade laser [J]. 吉林大学学报(工学版), 2011, 41(6): 1738-1742.
[7] LU Shao-wei, XIE Huai-qin,CHEN Ping . Smart CFRP embedded with optical fiber Bragg grating sensors [J]. 吉林大学学报(工学版), 2008, 38(06): 1300-1304.
[8] Fan He1,2,Liu Bin2,Fan Ze3,Wang Cheng2 . Model test with similar material and numerical
simulation of culvert with high fills
[J]. 吉林大学学报(工学版), 2008, 38(02): 399-0403.
[9] Zheng Wen-zhong,Zhang Ge-ming,Liu Xu-dong,Zhang Bo-yi . Experiment on cave-in ultimate bearing capacity of grouted-square-steel tube [J]. 吉林大学学报(工学版), 2007, 37(04): 794-799.
[10] Qian Ying ,Zhang Ying, Yu Yong-sen, Zheng Wei,Zhang Yu-shu . Novel stress sensor of FBG on unique cantilever [J]. 吉林大学学报(工学版), 2006, 36(05): 757-0760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!