Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1712-1724.doi: 10.13229/j.cnki.jdxbgxb20170805

Previous Articles     Next Articles

Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall

GU Hai-dong1(),LUO Chun-hong2   

  1. 1. Zhejiang Provincial Institute of Communications Planning, Design & Research, Hangzhou 310006, China;
    2. Department of Road and Bridge, Zhejiang Highway Technicians College, Hangzhou 310023, China
  • Received:2017-08-01 Online:2018-11-20 Published:2018-12-11

Abstract:

Eight groups of centrifuge tests of pit foundation supporting with scattered piles and soil nailing were carried out by Tongji University. Based on the results of eight group tests, the analysis model of the final form of soil arching effect in pit supporting structure with scattered row piles and soil nailing was put forward. Not only the dynamic development process of soil arching effect between piles was explored, but also the effects of the pile spacing and soil nailing parameters on the soil arching pattern was analyzed in combining with three-dimensional finite element numerical simulation. The results show that, for pit supporting structure with scattered row piles and soil nailing, when the ratio of pile spacing to pile diameter is greater than 8 or the ratio of soil nail length to the excavation depth is greater than 2/3, the soil between piles can not form soil arching effect. In addition, when the ratio of pile spacing to pile diameter is in the range of 4~6 and the ratio of soil nail length to excavation depth is less than 2/3, the soil arching effect is obvious. Furthermore, for pit supporting structure with scattered row piles and soil nailing, the final form of soil arching effect is a curved surface, which along the top surface appears as parabolic and along the depth direction has a certain vertical depth.

Key words: geotechnical engineering, scattered row piles, soil nail wall, soil arching effect, centrifuge model test, three-dimensional finite element analysis

CLC Number: 

  • TU47

Table 1

Physical and mechanical properties of soil sample"

比重 含水量
/%
密度
/(g?cm-3)
固结不排水强度
黏聚力/kPa 内摩擦角/(°)
2.7 40 1.9 7 33.5

Fig.1

Schematic diagram of model piles"

Fig.2

Model soil nails"

Fig.3

Surface of soil nail wall"

Table 2

Results of centrifuge model tests"

模型
编号
桩间距
B/mm
钉长L
/mm
土钉水
平间距
Sh/mm
土钉竖
向间距
Sv/mm
最大离心
加速度
/(9.8 m·s-2)
1 120 66.7 20 40 60
2 120 100.0 20 40 80
3 120 133.3 20 40 90
4 120 200.0 20 40 120
5 80 66.7 20 40 80
6 160 66.7 20 40 50
7 120 66.7 20 20 80
8 120 66.7 40 20 40

Fig.4

Centrifuge model"

Table 3

Relationship between acceleration and prototype size"

加速度
/(9.8 m·s-2)
边坡高度
H/m
桩长L'/m 桩径D/m
1 0.20 0.40 0.02
10 2.00 4.00 0.2
20 4.00 8.00 0.4
30 6.00 12.00 0.6
40 8.00 16.00 0.8
50 10.00 20.00 1.0

Fig.5

Layout graph of displacement sensor"

Fig.6

Camera dynamic monitoring system"

Fig.7

Construction pits after centrifuge model test"

Fig.8

Computing model"

Fig.9

Load of pile"

Table 4

Ratio of pile calculated width and the pile diameter b/D"

模型
编号
离心加速度
30g 40g 50g 60g 70g 80g 90g 100g 110g 120g
1 1.33 2.59 4.91 5.67 - - - - - -
2 1.20 2.30 3.81 4.45 5.50 5.69 - - - -
3 0.96 1.29 1.46 1.52 1.65 2.07 2.775 - - -
4 0.64 0.87 1.07 1.29 1.55 1.69 1.85 1.93 1.99 2.05
5 1.59 2.23 2.42 2.77 3.09 - - - - -
6 1.59 2.10 2.62 - - - - - - -
7 0.77 0.86 1.13 1.64 4.94 5.46 - - - -
8 2.76 3.38 - - - - - - - -

Table 5

Calculation parameters of FEM model"

材料 弹性模量
/MPa
泊松比 粘聚力
/kPa
内摩擦角
/(°)
容重
/(kN·m-3)
70 000 0.2 - - 27
土体 30 0.35 7.5 33.7 19
土钉 210 000 0.2 - - 28
面板 7 000 0.2 - - 27

Fig.10

Sketch of FEM model"

Fig.11

Surface subsidence (model test five)"

Fig.12

Failure mode of FEM model"

Fig.13

Internal forces and displacement pile(model test five)"

Fig.14

Horizontal displacement of soil behind piles(n=70g)"

Fig.15

Slip surface and soil arching form(n=70g)"

Fig.16

Forms of soil arching"

Table 6

Parameters of soil arching"

参数 模型编号
1 2 3 4 5 6 7 8
拱高/mm 30 45 0 0 25 0 5 65
直立深度/mm 100 80 0 0 120 0 20 60

Fig.17

Inference of pile spacing on soil arching form"

Fig.18

Inference of soil-nailing length on soil arching form"

Fig.19

Inference of soil-nailing spacing on soil arching form"

[1] 宋广, 黄建华, 宋二祥 . 超前微桩复合土钉支护三维非线性分析[J]. 岩土工程学报, 2010,32(增刊1):151-155.
Song Guang, Huang Jian-hua, Song Er-xiang . Three dimensional nonlinear analysis of composite soil nailing with micro piles for deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010,32(Sup.1):151-155.
[2] 吴忠诚, 杨志银, 罗小满 , 等. 疏排桩锚-土钉墙组合合支护结构稳定性分析[J]. 岩石力学与工程学报, 2006,25(增刊2):3607-3613.
doi: 10.3321/j.issn:1000-6915.2006.z2.042
Wu Zhong-cheng, Yang Zhi-yin, Luo Xiao-man , et al. Stability analysis of scattered row pile-soil-nailed wall protection structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(Sup.2):3607-3613.
doi: 10.3321/j.issn:1000-6915.2006.z2.042
[3] 公宝兴, 孙振 . 钢管桩与土钉墙联合支护设计研究[J]. 国防交通工程与技术, 2005(1):65-68.
doi: 10.3969/j.issn.1672-3953.2005.01.020
Gong Bao-xing, Sun Zhen . The design of the retaining support with steel tube piles and soil-nail wall[J]. Traffic Engineering and Technology National Defence, 2005(1):65-68.
doi: 10.3969/j.issn.1672-3953.2005.01.020
[4] 杨志银 . 复合土钉墙技术在深圳的应用与发展[J]. 岩土工程学报, 2006,28(增刊):1673-1676.
doi: 10.3321/j.issn:1000-4548.2006.z1.082
Yang Zhi-yin . Development and application of composite soil nailing walls in Shenzhen[D]. Chinese Journal of Geotechnical Engineering, 2006,28(Sup.):1673-1676.
doi: 10.3321/j.issn:1000-4548.2006.z1.082
[5] 杨志银, 张俊, 王凯旭 . 复合土钉墙技术的研究及应用[J]. 岩土工程学报, 2005,27(2):153-156.
doi: 10.3321/j.issn:1000-4548.2005.02.004
Yang Zhi-yin, Zhang Jun, Wang Kai-xu . Development of composite soil nailing walls[J]. Chinese Journal of Geotechnical Engineering, 2005,27(2):153-156.
doi: 10.3321/j.issn:1000-4548.2005.02.004
[6] Hewlett W J, Randolph M F . Analysis of piled embankments[J]. Ground Engineering, 1988,21(3):12-18.
[7] Low B K, Tang S K, Choa V . Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994,120(11):1917-1938.
doi: 10.1061/(ASCE)0733-9410(1994)120:11(1917)
[8] 曹卫平, 陈仁朋, 陈云敏 . 桩承式加筋路堤土拱效应试验研究[J]. 岩土工程学报, 2007,29(3):436-441.
doi: 10.3321/j.issn:1000-4548.2007.03.021
Cao Wei-ping, Chen Ren-peng, Chen Yun-min . Experimental investigation on soil arching in piled reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2007,29(3):436-441.
doi: 10.3321/j.issn:1000-4548.2007.03.021
[9] 曹卫平, 凌道盛, 陈云敏 . 刚性桩加固高速公路软基土拱效应现场试验研究及其与解析解的比较[J]. 岩土工程学报, 2007,29(10):1576-1581.
Cao Wei-ping, Ling Dao-sheng, Chen Yun-min . Field test on soil arching of highway embankments reinforced with rigid piles and their comparison with current analytical methods[J]. Chinese Journal of Geotechnical Engineering, 2007,29(10):1576-1581.
[10] Ito T, Matsui T . Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundation, 1975,15(4):43-59.
doi: 10.3208/sandf1972.15.4_43
[11] Ito T . Extended design method for multi row stabilizing piles against landslide[J]. Soils and Foundation, 1982,22(1):1-13.
[12] Bosscher J, Gray H . Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986,112(6):626-645.
doi: 10.1061/(ASCE)0733-9410(1986)112:6(626)
[13] 朱碧堂, 温国炫, 刘一亮 . 基坑开挖和支护中土层拱效应的理论分析[J]. 建筑技术, 2002,33(2):97-98.
Zhu Bi-tang, Wen Guo-xuan, Liu Yi-liang . Theoretical analysis of soil in excavation and retaining works[J]. Architecture Technology, 2002,33(2):97-98.
[14] 周德培, 肖世国, 夏雄 . 边坡工程中抗滑桩合理桩间距的探讨[J]. 岩土工程学报, 2004,26(1):132-135.
doi: 10.3321/j.issn:1000-4548.2004.01.025
Zhou De-pei, Xiao Shi-guo, Xia Xiong . Discussion on rational spacing between adjacent anti-slide piles in some cutting slope projects[J]. Chinese Journal of Geotechnical Engineering, 2004,26(1):132-135.
doi: 10.3321/j.issn:1000-4548.2004.01.025
[15] 贾海莉, 王成华, 李江洪 . 基于土拱效应的抗滑桩与护壁桩的桩间距分析[J]. 工程地质学报, 2004,12(1):98-103.
doi: 10.3969/j.issn.1004-9665.2004.01.018
Jia Hai-li, Wang Cheng-hua, Li Jiang-hong . Analysis of pile spacing between anti-sliding piles and pertaining piles in accordance with soil arching effect[J]. Journal of Engineering Geology, 2004,12(1):98-103.
doi: 10.3969/j.issn.1004-9665.2004.01.018
[16] 蒋良潍, 黄润秋, 蒋忠信 . 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006,27(3):445-450.
doi: 10.3969/j.issn.1000-7598.2006.03.021
Jiang Liang-wei, Huang Run-qiu, Jiang Zhong-xin . Analysis of soil arching effect between adjacent piles and their spacing in cohesive soils[J]. Rock and Soil Mechanics, 2006,27(3):445-450.
doi: 10.3969/j.issn.1000-7598.2006.03.021
[17] 古海东, 杨敏 . 考虑土拱效应的疏排桩支护基坑内力和变形分析[J]. 岩土力学, 2014,35(12):3531-3540.
Gu Hai-dong, Yang Min . Analysis of internal forces and displacement of pit supporting structure with scattered row piles considering soil arching effect[J]. Rock and Soil Mechanics, 2014,35(12):3531-3540.
[18] 古海东, 杨敏 . 土钉墙在疏排桩支护基坑中的加固效果试验研究[J]. 土木工程学报, 2015,48(1):129-138.
Gu Hai-dong, Yang Min . Experimental study on reinforcement effect of soil-nailed wall in pit excavation supported with scattered row piles[J]. China Civil Engineering Journal, 2015,48(1):129-138.
[19] JGJ120—2012. 建筑基坑支护计算规程[S].
[20] 古海东, 杨敏 . 疏排桩-土钉墙组合支护结构排桩荷载分担比试验研究[J]. 建筑结构学报, 2013,35(2):102-110.
Gu Hai-dong, Yang Min . Experimental study on pile load sharing ratio of composite structure with scattered piles and soil nailing[J]. Journal of Building Structures, 2013,35(2):102-110.
[1] SU Ying-she,YANG Yuan-yuan. Analysis of load transfer ratio of soil arching in sparse row piles [J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[2] Li Xue-xia, Feng Jiu-chao . Non-coherent detection scheme for chaotic digital communications based on inverse iteration[J]. 吉林大学学报(工学版), 2007, 37(01): 202 -205 .
[3] Qian Zhi-rui,Li Ming-zhe,Sun Gang,Tan Fu-xing,Jin Wen-ji . Numerical simulation on the process of sphere surface
multistep multipoint forming
[J]. 吉林大学学报(工学版), 2007, 37(02): 338 -0342 .
[4] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[5] Lin Lin; Wang Shu-xun; Wei Xiao-li. Gaussian mixture model training method based on genetic algorithms and fuzzy approach[J]. 吉林大学学报(工学版), 2006, 36(06): 967 -0972 .
[6] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[7] Xu An,Qiao Xiang-ming. Failure rate expression of complex equipment based on renewal theory[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[8] Zhan Jun. Setup of vehicle longitudinal dynamic model for adaptive cruise control[J]. 吉林大学学报(工学版), 2006, 36(02): 157 -0160 .
[9] Du Zhongze, Huang Junxia, Fu Hanguang, Wang Jingtao, Zhao Xicheng. Microstructure and mechanical property of 65Mn steel after severe plastic deformation[J]. 吉林大学学报(工学版), 2006, 36(02): 143 -0147 .
[10] Yang Zhijun, Tian Di, Zhou Bin. Network monitor based on NDIS intermediate driver[J]. 吉林大学学报(工学版), 2006, 36(02): 224 -0226 .