吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (增刊1): 147-150.

Previous Articles     Next Articles

Perturbed origin shift combined approximation method of N repeated defective systems

XU Tao1,2, ZHAO Shi-jia2, ZHANG Wei2, TAN Li-hui2,3, LV Gang2, LI Heng2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    3. Department of Mechatronics, Jilin Institute of Chemical Technology, Jilin 132022, China
  • Received:2011-09-13 Online:2012-09-01 Published:2012-09-01

Abstract: A fast algorithm of solving reanalysis problem of modified linear vibration defective system was proposed based on origin shift combined approximation method. For the perturbed defective system, the generalized eigenvectors can be expressed by the combination of the basis vectors and the coefficient vectors by introducing the shift of origin parameter based on the generalized mode theory and combined approximation method. By this method, the complex operations are simplified instead of solving large scale equations. The numerical examples demonstrate that the presented algorithm is efficient and fast with good accuracy and stability.

Key words: engineering mechanics, defective eigenvector set, generalized mode theory, shift of origin, linear vibration

CLC Number: 

  • O302
[1] Friswell M I, Prells U, Garvey S D. Low-rank damping modifications and defective systems[J]. Journal of Sound and Vibration, 2005, 279(3-5): 757-774.

[2] 时国勤,诸德超. 线性振动亏损系统的广义模态理论[J]. 力学学报, 1989, 21(2): 183-192. Shi Guo-qin, Zhu De-chao. The generalized mode theory of linear structural vibration defective systems[J]. ACTA Mechanica Sinica, 1989, 21(2): 183-192.

[3] 陈塑寰, 徐涛, 韩万芝. 线性振动亏损系统的矩阵摄动理论[J]. 力学学报, 1992, 24(6): 747-753. Chen Su-huan, Xu Tao, Han Wan-zhi. Matrix perturbation for linear vibration defective systems[J]. ACTA Mechanica Sinica, 1992, 24(6): 747-753.

[4] 杨前进, 张培强. 线性振动亏损系统的模态分析理论[J]. 中国科学技术大学学报, 1991, 21(3): 53-61. Yang Qian-jin, Zhang Pei-qiang. Modal theory of linear defective vibration system[J]. Journal of China University of Science and Technology, 1991, 21(3): 53-61.

[5] Xu Tao, Xu Tian-shuang, Zuo Wen-jie, et al. Fast sensitivity analysis of defective system[J]. Applied Mathematics and Computation, 2010, 217(7): 3248-3256.

[6] 徐涛,于澜,鞠伟,等. 计算亏损系统模态灵敏度的逐层递推演算方法[J]. 力学学报,2008,40(2): 281-289. Xu Tao, Yu Lan, Ju Wei, et al. Recursive solution on layer after layer for sensitivity analysis of modes on defective linear vibration system[J]. ACTA Mechanica Sinica, 2008, 40(2): 281-289.

[7] Zhang Zhen-yu. Approximate method for eigensensitivity analysis of a defective matrix[J]. Journal of Computational and Applied Mathematics, 2011,235(9): 2913-2927.

[8] Kirsch U. Combined approximations-a general reanalysis approach for structural optimization[J]. Structural Optimization, 2000, 20(2): 97-106.

[9] Kirsch U, Kocvara M, Zowe J. Accurate reanalysis of structures by a preconditioned conjugate gradient method[J]. International Journal for Numerical Methods in Engineering, 2002, 55(2): 233-251.
[1] NI Ying-sheng,SUN Qi-xin,MA Ye,XU Dong,LIU Chao. Shear distribution of multi-cell corrugated steel web composite beams based on space grid analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1735-1746.
[2] CHEN Zhong-min, HOU Li, DUAN Yang, ZHANG Qi, YANG Zhong-xue, JIANG Yi-qiang. Vibration analysis of a new pin-cycloid speed reducer [J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[3] YAN Ya-bin, WANG Xiao-yuan, WAN Qiang. Low-cycle fatigue fracture behavior of nanoscale interface [J]. 吉林大学学报(工学版), 2017, 47(4): 1201-1206.
[4] MENG Guang-wei, FENG Xin-yu, ZHOU Li-ming, Li Feng. Structural reliability analysis based on dimension reduction algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[5] CHEN Jiang-yi, LIU Bao-yuan. Influence of fiber fracture damage on dispersion characteristic of guided wave in composite plate [J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[6] YANG Hui-yan, HE Xiao-cong, ZHOU Sen. Simulation and calculation methods for clinched joint strength [J]. 吉林大学学报(工学版), 2015, 45(3): 864-871.
[7] ZHANG Qing,WANG Lei. Internal force analysis of multiple rows of piles based on differential equation set [J]. 吉林大学学报(工学版), 2014, 44(5): 1327-1333.
[8] ZHAO Shi-jia, XU Tao, CHEN Wei, TAN Li-hui. Efficient approach for modal sensitivity analysis for near defective systems [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 497-499.
[9] YAN Guang, FAN Zhou, LI Zhong-hai, CHENG Xiao-quan, LIU Ke-ge, ZUO Chun-cheng. Analysis and design of composite cylindrical shell with cover [J]. , 2012, (06): 1437-1441.
[10] JIANG Hao, GUO Xue-dong. Concrete bridge modal parameter identification under seismic excitations [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
[11] TIAN Wei, GUO Xue-dong, YIN Xin-sheng. Theoretical and experimental research on oblique cross-section cracking resistance of wall-beam by concrete hollow block [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 189-193.
[12] LI Chun-liang, WANG Guo-qiang, LIU Fu-shou, ZHAO Kai-jun. Mechanical behavior analysis of shield segment structure [J]. 吉林大学学报(工学版), 2011, 41(6): 1669-1674.
[13] ZHANG Dao-ming, GUO Xue-dong, ZHAO Zhi-meng. Bending damage analysis of reinforced concrete beam using perturbation method [J]. 吉林大学学报(工学版), 2011, 41(05): 1358-1363.
[14] CHEN Geng-Ye, WANG Yan-Zhao, YAO Zhan-Wei. Stressinduction EMF changing with load for parallelchord steel trusses [J]. 吉林大学学报(工学版), 2010, 40(增刊): 222-0227.
[15] JIA Chao, JI Sheng-Zhen, ZHANG Feng. Timedependent reliability of concrete pier of Tsingtao bay bridge [J]. 吉林大学学报(工学版), 2010, 40(06): 1543-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!