Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1735-1746.doi: 10.13229/j.cnki.jdxbgxb20170719

Previous Articles     Next Articles

Shear distribution of multi-cell corrugated steel web composite beams based on space grid analysis

NI Ying-sheng1(),SUN Qi-xin2(),MA Ye1,XU Dong2,LIU Chao2   

  1. 1. Research Institute of Highway,Ministry of Transport,Beijing 100088, China
    2. School of Civil Engineering,Tongji University,Shanghai 200092,China
  • Received:2017-07-08 Online:2018-11-20 Published:2018-12-11

Abstract:

The composite girder bridge with multi-cell corrugated steel web has been widely used in recent years, but there are some deficiencies in the corresponding specification and fine calculation methods. At present, the design mostly adopts the computational analytical method combining the spatial bar system model, plane beam grillage model and solid model. However, the spatial bar system model is short of the refinement analysis on the space effect, such as the shear lag effect, effective distribution width problem, and eccentric load factor problem etc. Due to the similarity of the plane beam grillage method in the equivalence principle, it can not accurately reflect the shearing stress distribution and local stress of the top and bottom plates of the box type composite beam. The solid model is very difficult to combine with the overall calculation. Moreover, the spatial grid model can achieve the refinement analysis, with the integrity of the analysis and the comprehensiveness of the stress checking calculation, and can make up the deficiency of the analytical method currently. Through the example verification of the solid model and spatial grid model, it can be seen that the calculation results for the stress and the displacement of two models are almost consistent, indicating the applicability and precision of the grid model.The real bridge analysis shows that the space grid model of multiple chamber box girder with corrugated steel webs can be calculated the web shear transverse distribution clearly, and the each web shear distribution rules of cable-stayed bridge at the key sections of side and mid span, so it can provide some suggestions for this kind of engineering design.

Key words: engineering mechanics, corrugated steel web, composite beam cable-stayed bridge, multi-cell, spatial grid model, refined analysis

CLC Number: 

  • TU318

Fig.1

Schematic diagram of simplification principle of spatial grid model"

Fig.2

Schematic diagram of cross section division of spatial grid model"

Fig.3

Common cross section of spatial grid model"

Fig.4

Schematic diagram of calculation of common cross section characteristics in spatial grid"

Fig.5

Schematic diagram of “division section” effect calculation of spatial grid model"

Fig.6

Section and size of corrugated steel webs"

Fig.7

Schematic diagram of ANSYS solid model and a wavelength signal"

Fig.8

Schematic diagram of geometrical parameters of corrugated web"

Fig.9

Section and cell-plane stiffness section of vertical rod unit"

Fig.10

Schematic diagram of space grid model"

Fig.11

Locations of comparison point"

Fig.12

Comparison of vertical displacement under self-weight"

Fig.13

Comparison of normal stress under self-weight"

Fig.14

Comparison of shear stress"

Fig.15

Schematic diagram of locations of symmetric load"

Fig.16

Comparison of vertical displacement under torsion"

Fig.17

Comparison of normal stress under torsion"

Fig.18

Comparison of shear stress under torsion"

Fig.19

Bridge span layout"

Fig.20

Compute model of spatial grid and single-beam"

Fig.21

Schematic diagram of divide signal of box girder cross-section"

Fig.22

Partial model diagram"

Table 1

Shear distribution diagram of beams at critical cable of side span kN"

Table 2

Shear distribution of side-span webs under dead load kN"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 88.25 -46.9 217 1:0.53:2.45
2#横梁 320.34 298 -754.5 1:0.91:2.36
3#横梁 537 403.9 -1612.5 1:0.75:3.0
4#横梁 173.7 -164.52 -653.5 1:0.95:3.76
5号索 1#横梁 -55.2 123.45 143.975 1:2.24:2.61
2#横梁 180.07 217.99 -672.44 1:1.21:3.73
3#横梁 394.57 273.4 -1271.92 1:0.69:3.22
4#横梁 -168.13 120.52 179.96 1:0.72:1.07
9号索 1#横梁 -887.74 -576.64 1043.44 1:0.64:1.18
2#横梁 -474.75 -448.52 450.36 1:0.94:0.95
3#横梁 -559.76 -284.98 -536.92 1:0.51:0.96
4#横梁 -438.47 -288.14 -305.57 1:0.66:0.70

Table 3

Shear distribution of mid-span webs under dead load kN"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 -175.46 -236.12 928.24 1:1.35:5.29
2#横梁 -570.05 -359.64 1331.66 1:0.63:2.34
3#横梁 -358.46 -306.19 493.08 1:0.85:1.38
4#横梁 -125.77 -115.63 -986.34 1:0.92:7.84
5号索 1#横梁 356.99 -219.57 -350.47 1:0.62:0.98
2#横梁 -193.33 -112.67 1083.06 1:0.58:5.6
3#横梁 -79.07 -68.71 549.58 1:0.87:6.95
4#横梁 155.24 80.77 -319.74 1:0.52:2.06
9号索 1#横梁 374.3 175.9 -333.92 1:0.47:0.89
2#横梁 121.53 115.28 266.09 1:0.95:2.19
3#横梁 215.57 214.22 -603.4 1:0.99:2.8
4#横梁 -214.74 -180.212 349.78 1:0.84:1.63

Table 4

Max shear distribution of side span webs under live load kN"

Table 5

"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 320.66 422.6 433.9 1:1.32:1.35
2#横梁 379.7 443.2 333.5 1:1.17:0.88
3#横梁 447.7 473.2 342.2 1:1.06:0.76
4#横梁 313.78 472.1 500.2 1:1.5:1.6
5号索 1#横梁 202.55 230.8 216.6 1:1.14:1.07
2#横梁 243.23 262.4 168.7 1:1.08:0.69
3#横梁 304.36 316.1 179.91 1:1.04:0.59
4#横梁 193.02 281.90 243.90 1:1.46:1.26
9号索 1#横梁 113.49 115.11 152.74 1:1.01:1.35
2#横梁 140.79 160.1 123.83 1:1.14:0.88
3#横梁 183.54 204.29 152.67 1:1.11:0.83
4#横梁 145.68 152.08 117.47 1:1.04:0.81

Table 6

Min shear distribution of side-span webs under live load kN"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 -189.92 -157.25 -82.53 1:0.83:0.43
2#横梁 -148.99 -128.29 -122.59 1:0.86:0.82
3#横梁 -134.48 -116.85 -114.69 1:0.87:0.85
4#横梁 -261.23 -213.27 -196.85 1:0.82:0.75
5号索 1#横梁 -281.39 -229.54 -161.22 1:0.82:0.57
2#横梁 -230.08 -195.72 -174.78 1:0.85:0.76
3#横梁 -210.25 -176.54 -174.74 1:0.84:0.83
4#横梁 -358.33 -306.84 -206.68 1:0.86:0.58
9号索 1#横梁 -421.5 -433.1 -346.3 1:1.02:0.82
2#横梁 -417.7 -451.3 -316.9 1:1.08:0.76
3#横梁 -395.8 -448.6 -315.8 1:1.13:0.8
4#横梁 -530.5 -518.2 -374.4 1:0.98:0.71

Table 7

Max shear distribution of mid-span webs under live load kN"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 267.41 225.01 199.99 1:0.84:0.75
2#横梁 171.44 129.32 129.06 1:0.75:0.75
3#横梁 178.9 138.14 132.89 1:0.77:0.74
4#横梁 200.45 162.31 97.63 1:0.81:0.49
5号索 1#横梁 301.04 284.26 201.06 1:0.94:0.67
2#横梁 173.31 170.86 162.09 1:0.99:0.94
3#横梁 184.12 183.35 157.12 1:1.0:0.85
4#横梁 222.09 214.31 144.15 1:0.96:0.65
9号索 1#横梁 360.75 369.4 278.1 1:1.02:0.77
2#横梁 257.56 277 192.79 1:1.08:0.75
3#横梁 299.69 293.5 191.92 1:0.98:0.64
4#横梁 276.31 275 294.2 1:1.0:1.06

Table 8

Min shear distribution of mid-span webs under live load kN"

加密区段 外腹板 内腹板 中腹板 大致比例
1号索 1#横梁 -433.3 -571.6 -611.4 1:1.32:1.41
2#横梁 -578.4 -562.4 -436.4 1:0.97:0.75
3#横梁 -510 -534.5 -415.4 1:1.05:0.81
4#横梁 -449.9 -515.9 -537.8 1:1.15:1.2
5号索 1#横梁 -319.56 -418.2 -376.8 1:1.31:1.18
2#横梁 -437.4 -413.5 -268.9 1:0.95:0.6
3#横梁 -375.7 -378.8 -277.4 1:1.0:0.74
4#横梁 -322.57 -359.70 -356.70 1:1.12:1.11
9号索 1#横梁 -231.53 -322.7 -297.5 1:1.4:1.28
2#横梁 -293.33 -315.7 -249.2 1:1.08:0.85
3#横梁 -249.16 -302.5 -284.4 1:1.2:1.14
4#横梁 -365.82 -320 -291 1:0.87:0.8
[1] 肖湘, 黄恩厚, 尼颖升 . 预应力混凝土梁板体系有效翼缘的理论分析及试验[J]. 吉林大学学报:工学版, 2015,45(6):1784-1790.
doi: 10.13229/j.cnki.jdxbgxb201506008
Xiao Xiang, Huang En-hou, Ni Ying-sheng . Theoretic analysis and experimental study of effective flange width on beam-plates system of prestressed concrete[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(6):1784-1790.
doi: 10.13229/j.cnki.jdxbgxb201506008
[2] Jung K H, Kim K S, Sim C W , et al. Verification of incremental launching construction safety for the llsun bridge:the world's longest and widest prestressed concrete box girder with corrugated steel web section[J]. Journal of Bridge Engineering, 2011,16(3):453-460.
doi: 10.1061/(ASCE)BE.1943-5592.0000165
[3] Li Guo-qiang, Wang Wei-yong . A simplified approach for fire-resistance design of steel-concretecomposite beams[J]. Steel and Composite Structures, 2013,14(3):295-312.
doi: 10.12989/scs.2013.14.3.295
[4] 贺君 . 波折钢腹板组合桥梁力学性能与设计方法研究[D]. 上海:同济大学土木工程学院, 2011.
He Jun . Mechanical performance and design method of composite bridge with corrugated steel webs[D]. Shanghai:School of Civil Engineering, Tongji University, 2011.
[5] Nguyen N D, Kim S N, Han S R , et al. Elastic lateral-torsional buckling strength of I-girder with trapezoidal web corrugations using a new warping constant under uniform moment[J]. Engineering Structures, 2010,32(8):2157-2165.
doi: 10.1016/j.engstruct.2010.03.018
[6] Liu Chao, Xu Dong . Space frame lattice model for stress analysis of bridge[J]. The Baltic Journal of Road and Bridge Engineering, 2010,5(2):98-103.
doi: 10.3846/bjrbe.2010.14
[7] Liu Chao, Xu Dong . Influence of cracking on deflections of concrete box girder bridges[J]. Baltic Journal of Road and Bridge Engineering, 2012,7(2):104-111.
doi: 10.3846/bjrbe.2012.15
[8] 徐栋, 赵瑜, 刘超 . 混凝土桥梁的实用精细化分析与设计[M]. 北京: 人民交通出版社, 2013.
[9] Xu Dong, Zhao Yu. Application of spatial grid model in structural analysis of concrete box girder bridges [C]//18th Congress of International Association for Bridge and Structural Engineering, Seoul, 2012: 2009-2016.
[10] ValsaIpe T, Sharada B H, Manjula V K , et al. Flexural behavior of cold-formed steel concrete composite beams[J]. Steel and Composite Structures, 2013,14(2):105-120.
doi: 10.12989/scs.2013.14.2.105
[11] Mo Y L, Fan Y L . Torsional design of hybrid concrete box girders[J]. Journal of Bridge Engineering, 2006,11(3):329-339.
doi: 10.1061/(ASCE)1084-0702(2006)11:3(329)
[12] Machimdamrong C, Watanabe E, Utsunomiya T . Analysis of corrugated steel web girders by an efficient beam bending theory[J]. Structural Engineering/Earthquake Engineering, 2004,21(2):131-142.
doi: 10.2208/jsceseee.21.131s
[13] Huang L, Hikosaka H, Komine K . Simulation of accordion effect in corrugated steel web with concrete flanges[J]. Computers and Structures, 2004,82(23-26):2061-2069.
doi: 10.1016/j.compstruc.2003.07.010
[1] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[2] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[3] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[4] YAN Ya-bin, WANG Xiao-yuan, WAN Qiang. Low-cycle fatigue fracture behavior of nanoscale interface [J]. 吉林大学学报(工学版), 2017, 47(4): 1201-1206.
[5] CHEN Jiang-yi, LIU Bao-yuan. Influence of fiber fracture damage on dispersion characteristic of guided wave in composite plate [J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[6] MENG Guang-wei, FENG Xin-yu, ZHOU Li-ming, Li Feng. Structural reliability analysis based on dimension reduction algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[7] YANG Hui-yan, HE Xiao-cong, ZHOU Sen. Simulation and calculation methods for clinched joint strength [J]. 吉林大学学报(工学版), 2015, 45(3): 864-871.
[8] ZHANG Qing,WANG Lei. Internal force analysis of multiple rows of piles based on differential equation set [J]. 吉林大学学报(工学版), 2014, 44(5): 1327-1333.
[9] ZHANG Jin-bo, YUAN Chao-wei, WANG Qiu-cai, HAN Xi. Interference alignment scheme for multicell multiuser system through THP [J]. 吉林大学学报(工学版), 2014, 44(2): 531-537.
[10] ZHAO Shi-jia, XU Tao, CHEN Wei, TAN Li-hui. Efficient approach for modal sensitivity analysis for near defective systems [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 497-499.
[11] XU Tao, ZHAO Shi-jia, ZHANG Wei, TAN Li-hui, LV Gang, LI Heng. Perturbed origin shift combined approximation method of N repeated defective systems [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 147-150.
[12] YAN Guang, FAN Zhou, LI Zhong-hai, CHENG Xiao-quan, LIU Ke-ge, ZUO Chun-cheng. Analysis and design of composite cylindrical shell with cover [J]. , 2012, (06): 1437-1441.
[13] JIANG Hao, GUO Xue-dong. Concrete bridge modal parameter identification under seismic excitations [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
[14] TIAN Wei, GUO Xue-dong, YIN Xin-sheng. Theoretical and experimental research on oblique cross-section cracking resistance of wall-beam by concrete hollow block [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 189-193.
[15] LI Chun-liang, WANG Guo-qiang, LIU Fu-shou, ZHAO Kai-jun. Mechanical behavior analysis of shield segment structure [J]. 吉林大学学报(工学版), 2011, 41(6): 1669-1674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[2] Xu Si-chuan,Li Rong-qing,Cheng Qin,Guo Ying-nan,Zhang Ji-peng,Sun Ji-mei,Wang Yong-fu . Influence of boundary condition on combustion of ethanol HCCI engine[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[3] Shen Chuan-liang,Liu Guo-jun,Dong Jing-shi,Yang Zhi-gang,Cheng Guang-ming . Piezoelectric multi-vibrator and single-chamber pump for precise drug delivery[J]. 吉林大学学报(工学版), 2007, 37(01): 89 -94 .
[4] Peng Ya-ping1,Guo Ying-nan, Huang Wei-jun,Tan Man-zhi,Dong Lei,Wang Zhi-wei . Cyclebycycle variation of ethanol homogeneous
charge compression ignition combustion
[J]. 吉林大学学报(工学版), 2007, 37(02): 301 -0306 .
[5] Dong Li-yan, Yuan Sen-miao,Liu Guang-yuan, Li Yong-li,Guan Wei-zhou . Constrained classifier learning algorithm based on genetic algorithm[J]. 吉林大学学报(工学版), 2007, 37(03): 595 -0599 .
[6] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[7] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[8] Liang Ji-cai, Li Yi, Li Zhong-ran, Zhang Wei, Liu Cheng-de . Numerical simulation of filling process in resin transfer molding for automobile bumper[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 15 -19 .
[9] Li Jing,Wu Yun-ping,Yang Zhong-ang,Guo Li-shu,Wang Jun,Li You-de1,Li Chun-feng . Suspension damping control strategy for vehicle attitude control system[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 24 -28 .
[10] Yang Shi-chun, Yu Xiu-min, Tang Rui, Liu Le . Start control strategy in electronically controlled LPG
port injection spark ignition engine
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 46 -51 .