吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (增刊1): 475-478.

Previous Articles     Next Articles

Static and dynamic nano-mechanical properties of the keratinous of cattle horns

SUN Ji-yu1, WANG Yue-ming1, PAN Chun-xiang1,2, CONG Xian-ling3   

  1. 1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
    2. Department of basic, Air Force Aviation University, Changchun 130012, China;
    3. Sino-Japanese Friendship Hospital, Jilin University, Changchun 130033, China
  • Received:2012-03-31 Online:2012-09-01 Published:2012-09-01

Abstract: The static and dynamic nano-mechanical properties of the keratinous of cattle horns were investigated to show the gradient distribution of the hardness and moduli on the cross section and longitudinal section. The variation of the dynamic storage moduli and loss moduli under the different load and frequency were discussed. The results will be useful to study the biological function of the cattle horn.

Key words: biological engineering, keratinous, cattle horns, static nano-mechanical property, dynamic nano-mechanical property

CLC Number: 

  • Q811.6
[1] Hammer P L, Kogan A. Horn functions and their DNFs[J]. Information Processing Letters, 1992, 44(1): 23-29.

[2] Mercer E H. The Keratinized Tissues[M]. New York: Pergamon Press:64-66.

[3] 李炳蔚, 赵红平, 冯西桥. 牛角外壳力学性能的实验研究[C]//损伤断裂与微纳米力学研讨会论文集.北京:清华大学出版社, 2009: 279-284.

[4] Trim M V V, Horstemeyer M F, Rhee H, et al. The effects of water and microstructure on the mechanical properties of bighorn sheep(Ovis canadensis) horn keratin[J]. Acta Biomater, 2011,7(3): 1228-1240.

[5] Li B W, Zhao H P, Feng X Q. Static and dynamic mechanical properties of cattle horns[J]. Materials Science and Engineering, 2011,2(31): 179-183.

[6] Li B W, Zhao H P, Feng X Q, et al. Experimental study on the mechanical properties of the horn sheaths from cattle[J]. Journal of Experimental Biology, 2010, 213(3): 479-486.

[7] McKittrick J, Chen P Y, Tombolato L, et al. Energy absorbent natural materials and bioinspired design strategies: a review[J]. Materials Science and Engineering, 2010, 30(3): 331-342.

[8] Oyen M L, Cook R F. A practical guide for analysis of nanoindentation data[J]. Joural of the Mechanical Behavior of Biomedical Materials, 2009, 2(4): 396-407.

[9] Sun Ji-yu, Tong Jin, Ma Yun-hai, et al. Research on stress exponent for creep of insect cuticle used by nanoindenter[C]//International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering, Lushan, China,2010:50-53.

[10] Pathak S, Swadener J G, Kalidindi S R, et al. Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(1):34-43.

[11] 张泰华, 杨业敏. 纳米硬度技术的发展和应用[J]. 力学进展, 2002,32(3):349-364. Zhang Tai-hua, Yang Ye-min. Developments and applications of nano-hardness techniques[J]. Advances in Mechanics, 2002, 32(3): 349-364.
[1] WANG Xue-song, LI Gong-jun, ZHAO Shou-jing, AN Yan, QU Qing-ling, LU Chao. Heterologous coexpression of Panax ginseng DS and D12H genes [J]. 吉林大学学报(工学版), 2016, 46(4): 1368-1372.
[2] ZHAO Shou-jing, AN Yan, MENG Yang, HE Mu-yang, QU Qing-ling, HAO Dong-yun. Effect of interference expression of cycloartenol synthase gene on content of ginsenoside [J]. 吉林大学学报(工学版), 2014, 44(6): 1867-1870.
[3] LI Xiu-juan, LIANG Yun-hong, ZHANG Zhi-hui, REN Lu-quan. Microstructure and tensile property of poplar Ponulus hopeiensis leaves [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 440-443.
[4] MA Yun-hai, WANG Yue-ming, PAN Chun-xiang, SUN Ji-yu. Nano-mechanical properties and finite element analysis of abalone shell [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 437-439.
[5] JIA Hong-lei, WANG Yue-ming, ZHANG Zhi-jun, SUN Ji-yu. One-dimensional differential constitutive equation and viscoelastic model of elytra of the dung beetle (Copris ochus Motschulsky) [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 433-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!