吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1676-1683.doi: 10.13229/j.cnki.jdxbgxb201406022

Previous Articles     Next Articles

Modeling and analysis of the volumetric errors of four-axis polishing platform

ZHAO Guo-juan, ZHANG Lei, LU Lei, HAN Fei-fei, ZHAO Ji   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2013-07-22 Online:2014-11-01 Published:2014-11-01

Abstract: The volumetric error of a four-axis polishing platform with two aerostatic stages driven by linear motors and two rotational stages is modeled considering both position error and direction error by multi-body system theory. The individual geometric errors of the motion parts are measured by laser interferometer. The measuring results indicate that, for aerostatic stage, the position error shows neither linear increasing nor decreasing trend; the vertical straightness is larger than the position error and the vertical st4aightness, which is obviously different from the errors of traditional ball screw driven platform. The position component and direction component of the volumetric error of the resultant motion of two linear axes are investigated theoretically and experimentally considering the comprehensive influence of the individual geometric errors of the aerostatic stages. It is found that the vertical component of the volumetric error of the aerostatic stage is obvious. The causes of the geometric errors of the aerostatic stages are revealed, which provides the theoretical basis for geometric error compensation of the polishing platform.

Key words: machine tool technology, aerostatic stage, volumetric error, geometric error, multi-body system

CLC Number: 

  • TH161
[1] 杨建国. 数控机床误差补偿技术现状与展望[J]. 航空制造技术,2012(5):40-45. Yang Jian-guo. Present situation and prospect of error compensation technology for NC machine tool[J]. Aeronautical Manufacturing Technology,2012(5):40-45.
[2] 王维,杨建国,姚晓栋,等. 数控机床几何误差与热误差综合建模及其实时补偿[J]. 机械工程学报,2012,48(7):165-170. Wang Wei,Yang Jian-guo,Yao Xiao-dong,et al. Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering,2012,48(7):165-170.
[3] 王秀山,杨建国,闫嘉钰. 基于多体系统理论的五轴机床综合误差建模技术[J]. 上海交通大学学报,2008,42(5):761-764. Wang Xiu-shan,Yang Jian-guo, Yan Jia-yu. Synthesis error modeling of the five axis machine tools based on multi-body system theory[J]. Journal of Shanghai Jiaotong University,2008,42(5): 761-764.
[4] Lee R S,Lin Y H. Applying bidirectional kinematics to assembly error analysis for five-axis machine tools with general orthogonal configuration[J]. International Journal of Advanced Manufacturing Technology,2012, 62(9-11):1261-1272.
[5] Zhang Yi, Yang Jian-guo, Zhang Kun. Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar[J]. International Journal of Advanced Manufacturing Technology,2013,65(1-4): 275-281.
[6] 范晋伟,宋贝贝,王称心,等. TTTRR型五轴数控机床通用几何误差补偿关键技术的研究[J]. 机械设计与制造,2012(5):171-173. Fan Jin-wei,Song Bei-bei,Wang Chen-xin,et al. Research on key technology of general geometric error compensation of “TTTRR” type 5-axis numerical control machine[J]. Machinery Design & Manufacture,2012(5):171-173.
[7] Kong L B,Cheung C F,To S,et al. A kinematics and experimental analysis of form error compensation in ultra-precision machining[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1408-1419.
[8] 刘志峰,刘广博,程强,等. 基于多体系统理论的精密立式加工中心精度建模与预测[J]. 吉林大学学报:工学版,2012,42(2): 388-391. Liu Zhi-feng,Liu Guang-bo,Cheng Qiang,et al. Precision modeling and prediction of precise vertical machining center based on theory of multi-body system[J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(2): 388-391.
[9] 粟时平,李圣怡. 五轴数控机床综合空间误差的多体系统运动学建模[J]. 组合机床与自动化加工技术,2003(5):15-18. Su Shi-ping, Li Sheng-yi. Modeling the volumetric synthesis error of 5-axis machine tools based on multi-body system kinematics[J]. Modular Machine Tools and Automatic Manufacturing Technique,2003(5):15-18.
[10] Chow J H,Zhong Z W,Lin W,et al. A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage[J]. Applied Thermal Engineering,2012,48:89-96.
[11] Gao W,Arai Y, Shibuya A,et al. Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage[J]. Precision Engineering,2006,30(1):96-103.
[12] Ekinci T O,Mayer J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools and Manufacture,2007,47(12-13):1997-2004.
[13] Onat E T,Mayer J R R, Cloutier G M. Investigation of accuracy of aerostatic guideways[J]. International Journal of Machine Tools and Manufacture,2009,49(6):478-487.
[14] Mu Dong-hui,Chen Dong-ju,Fan Jin-wei,et al. Carriage error identification based on cross-correlation analysis and wavelet transformation[J]. Sensors,2012,12:9551-9565.
[15] 杨建国,范开国,杜正春,等. 数控机床误差实时补偿技术[M].北京:机械工业出版社,2013.
[16] 韩飞飞,赵继,张雷,等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报,2012,48(21): 141-148. Han Fei-fei,Zhao Ji,Zhang Lei,et al. Synthetical analysis and experimental study of the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering,2012,48(21): 141-148.
[1] QU Xing-tian, ZHAO Yong-bing, LIU Hai-zhong, WANG Xin, YANG Xu, CHEN Hang-de. Modeling and experiment of spatial geometric errors of hybrid serial-parallel machine tool [J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[2] YANG Zhao-jun, YANG Chuan-gui, CHEN Fei, WANG Dong-liang, MA Shuai, LIU Bo. Optimization of the electro-hydraulic servo loading based on least square and SVDUKF algorithms [J]. 吉林大学学报(工学版), 2014, 44(2): 392-397.
[3] LIU Zhi-feng, LIU Guang-bo, CHENG Qiang, XUAN Dong-sheng, CAI Li-gang. Precision modeling and prediction of precise vertical machining center based on theory of multi-body system [J]. 吉林大学学报(工学版), 2012, 42(02): 388-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!