吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1913-1923.doi: 10.13229/j.cnki.jdxbgxb201506027
Previous Articles Next Articles
ZHAO Jing-hua1,2, CHEN Zhi-gang1, HU Yun-feng1, CHEN Hong1
CLC Number:
[1] 刘忠长,孙士杰,田径,等. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报:工学版,2014,44(6): 1639-1646. Liu Zhong-chang, Sun Shi-jie, Tian Jing, et al. Influences of fuel injection parameters on emissions and combustion of diesel engine under transient conditions[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1639-1646. [2] Johnson T V. Diesel emission control in review[J]. SAE Int J Fuels Lubr, 2009, 1(1): 68-81. [3] Sch`ar C M, Onder C H, Geering H P. Control of an SCR catalytic converter system for a mobile heavy-duty application[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 641-653. [4] Johnson T V. Review of diesel emissions and control[J]. International Journal of Engine Research, 2009, 10(5): 275-285. [5] Gabrielsson P L T. Urea SCR in automotive applications[J]. Topics in Catalysis, 2004, 28(1-4): 177-184. [6] Chiang C J, Kuo C L, Huang C C, et al. Model predictive control of SCR aftertreatment system[C]∥IEEE Conference on Industrial Electronics and Applications, 2010: 2058-2063. [7] Devarkonda M, Parker G, Johnson J H. Model-based control system design in a urea-SCR aftertreatment system based on NH 3 sensor feedback[J]. International Journal of Automotive Technology, 2009, 10(6): 653-662. [8] Zhao J, Yang T L, Lu G Y. Enhancement of NO 2 gas sensing response based on ordered mesoporous fe-doped In 2 O 3 [J]. In Sensors and Actuators B, 2014, 191: 806-812. [9] 侯洁,颜伏伍,胡杰,等. Urea-SCR系统NO x 传感器的NH 3 交叉感应研究[J]. 内燃机学报,2014,32(3): 249-253. Hou Jie, Yan Fu-wu, Hu Jie, et al. Ammonia cross-sensitivity of NO x sensor for Urea-SCR system[J]. Transactions of CSICE, 2014,32(3): 249-253. [10] Hsieh M, Wang J. Diesel engine selective catalytic reduction ammonia surface coverage control using a computationally-efficient model predictive control assisted method[J]. Proceedings of the ASME Dynamic Systems and Control Conference, 2009, 1: 865-872. [11] Westerlund C, Westerberg B. Model predictive control of a combined EGR/SCR HD diesel engine[C]∥SAE Technical Papers, 2010-01-1175. [12] Hsieh M, Wang J. A two-cell backstepping-based control strategy for diesel engine selective catalytic reduction systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1504-1515. [13] Hsieh M, Wang J. Backstepping based nonlinear ammonia surface coverage ratio control for diesel engine selective catalytic reduction systems[J]. In Proceedings of the ASME Dynamic Systems and Control Conference, 2009, 1:1-8. [14] Zhang H, Wang J, Wang Y Y. Robust filtering for ammonia coverage estimation in diesel engine selective catalytic reduction systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2013,064504. [15] Bonfils A, Creff Y, Lepreux O, et al. Closed-loop control of a SCR system using a NO x sensor cross-sensitive to NH 3 [J]. Journal of Process Control, 2014, 24:368-378. [16] Bin Y, Li K Q, Ukawa H, et al. Modelling and control of a non-linear dynamic system for heavy-duty trucks[J]. Journal of Automobile Engineering, 2006, 220(10):1423-1435. [17] Li T H S, Huang C J, Chen C C. Novel fuzzy feedback linearization strategy for control via differential geometry approach[J]. ISA Transactions, 2010, 49:348-357. [18] Ma M M, Chen H, Cong Y F. Backstepping based constrained control of nonlinear hydraulic active suspensions[C]∥in Proceedings of the 26th Chinese Control Conference. Hunan China, 2007: 463-466. [19] Gao B Z, Chen H, Sanada K, et al. Design of clutch slip controller for automatic transmission using backstepping[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3):498-508. [20] Chen H, Gong X, Liu Q F, et al. Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines[J]. IET Control Theory and Applications, 2014, 8(11): 948-959. [21] Zhao H Y, Gao B Z, Ren B T, et al. Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2015, 352(2): 519-540. [22] Willi R. Low-temperature selective catalytic reduction of catalytic behavior and kinetic modeling[D]. Switzerland: ETH Zurich, 1996. [23] Heiredal M L, Jensen A D, Thogersen J R, et al. Pilot-scale investigation and cfd modeling of particle deposition in low-dust monolithic SCR deNO x catalysts[J]. AIChE Journal, 2013, 59(6): 1919-1933. [24] Kota A S, Luss D, Balakotaiah V. Modeling studies of low-temperature aerobic NO x reduction by a sequence of LNT-SCR catalysts[J]. AIChE Journal, 2013, 59(9): 3421-3431. [25] Hsieh M. Control of diesel engine urea selective catalytic reduction systems[D]. Ohio: Ohio State University, 2010. [26] Piazzesi G, Devadas M, Krocher O, et al. Isocyanic acid hydrolysis over fe-zam5 in urea SCR[C]∥Catalysis Communications, 2006, :600-602. [27] Philipp O, Huber M. Development and test of ECU functions for OBD with enDYNA[C]∥Proc JSAE Annual Congress, 2004. [28] Wang P, Chen H, Yang X P, et al. Design and analysis of a model predictive controller for active queue management[J]. ISA Transactions, 2012, 51: 120-131. [29] Tempo R, Calafiore G, Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems[M]. New York: Springer-Verlag, 2005. |
[1] | ZHANG Ru-bin, ZHAN Li-kui, PENG Wei, SUN Shao-ming, LIU Jun-fu, REN Lei. Constant power control in cardiopulmonary function evaluation and training system [J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190. |
|