吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 829-836.doi: 10.13229/j.cnki.jdxbgxb201503021

Previous Articles     Next Articles

Parameter estimation of reliability model of machining center based on particle swarm optimization and support vector regression

YANG Zhao-jun1, 2, YANG Chuan-gui1, 2, CHEN Fei1, 2, HAO Qing-bo1, 3, ZHENG Zhi-tong1, 2, WANG Song1, 2   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2.Key Laboratory of CNC Equipment Reliability Technique of Machinery Industry, Jilin University, Changchun 130022, China;
    3.Department of Mechanics, Aviation University of Air Force,Changchun 130022,China
  • Received:2014-03-28 Online:2015-05-01 Published:2015-05-01

Abstract: Based on the Support Vector Regression (SVR) model, a method is proposed to assess the parameters of the reliability model of machining centers by analyzing censored data. An improved Local best Particle Swarm Optimization algorithm (improved lbest PSO) is developed to tune parameters of the SVR model to keep working efficiently. The improved Lbest PSO, developed from the local best PSO (lbest PSO), introduces a mutation operation and an adaptive inertia fact to improve its ability to search the global optimal solution. Additionally, the Least Square Model (LSM), the Maximum Likelihood Model (MLM), the SVR model selected by the Lbest PSO and the Genetic Algorithm (GA) are employed to compare their estimation performance with the proposed method. Results show that the proposed method is superior to all the other models. Finally, this method is used to estimate the parameters of the reliability model of a type of machining center and obtain its mean time between failures.

Key words: computer numerial control machine tool, machining center reliability, Weibull model, support vector regression, particle swarm optimization

CLC Number: 

  • TG659
[1] 杨兆军,陈传海,陈菲,等. 数控机床可靠性技术的研究进展[J]. 机械工程学报,2013,49(20):130-139.
Yang Zhao-jun, Chen Chuan-hai, Chen Fei, et al. Progress in the research of reliability technology of machine tools[J]. Journal of Mechanical Engineering,2013,49(20):130-139.
[2] Balakrishnan N, Kateri M. On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data[J]. Statistics & Probability Letters,2008,78(17):2971-2975.
[3] Wu H C. Fuzzy reliability estimation using Bayesian approach[J]. Computers & Industrial Engineering,2004,46(3):467-493.
[4] Vapnik V. Statistical Learning Theory[M]. New York: Wiley, 1998.
[5] 杨兆军, 李小兵, 许彬彬,等. 加工中心时间动态可靠性建模[J]. 机械工程学报,2012,48(2):16-22.
Yang Zhao-jun, Li Xiao-bing, Xu Bin-bin, et al. Time dynamic reliability modelling of machining center[J]. Chinese Journal of Mechanical Engineering,2012,48(2):16-22.
[6] Bryan D. The Weibull Analysis Handbook[M]. ASQ Quality Press, 2006.
[7] Smola Alex J, Bernhard S. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
[8] 吴坚, 赵阳, 何睿. 基于支持向量机回归算法的电子机械制动传感器系统故障诊断[J]. 吉林大学学报:工学版, 2013,43(5):1178-1183.
Wu Jian, Zhao Yang, He Rui. Fault detection and diagnosis of EMB sensor system based on SVR[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(5): 1178-1183.
[9] Kennedy J, Mendes R. Population structure and particle swarm performance[C]∥Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu HI,USA,2002:1671-1676.
[10] 寇晓丽, 刘三阳. 基于模拟退火的粒子群算法求解约束优化问题[J]. 吉林大学学报:工学版,2007,37(1):136-140.
Kou Xiao-li, Liu San-yang. Particle swarm algorithm based on simulated annealing to solve constrained optimization[J]. Journal of Jilin University(Engineering and Technology Edition),2007,37(1):136-140.
[11] 王凌, 刘波. 微粒群优化与调度算法[M]. 北京:清华大学出版社, 2008.
[12] Engelbrecht A P. Fundamentals of Computational Swarm Intelligence[M]. Hoboken:John Wiley & Sons, 2006.
[13] Lins I D, Moura M C, Zio E, et al. A particle swarm‐optimized support vector machine for reliability prediction[J]. Quality and Reliability Engineering International,2012,28(2):141-158.
[1] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[2] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[3] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[4] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[5] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[6] HUANG Xuan, GUO Li-hong, LI Jiang, YU Yang. Target threat assessment based on BP neural network optimized by modified particle swarm optimization [J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[7] SUN Liang, XU Hai-lang, GE Hong-wei. Novel global convergence stochastic particle swarm optimizers [J]. 吉林大学学报(工学版), 2017, 47(2): 615-623.
[8] ZHANG Jia-xu, LI Jing. Parameter identification for UniTire model based on hybrid optimization method [J]. 吉林大学学报(工学版), 2017, 47(1): 15-20.
[9] LU Ying, WANG Hui-qin, QIN Li-ke. Accurate fire location method in high and large-span space buildings [J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[10] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[11] JI Yan-jie, CHEN Xiao-shi, WANG Wei, HU Bo. Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model [J]. 吉林大学学报(工学版), 2016, 46(2): 399-405.
[12] ZONG Fang, WANG Zhan-zhong, JIA Hong-fei, JIAO Yu-ling, WU Yang. Prediction of commuter's daily activity-travel duration time with support vector regression [J]. 吉林大学学报(工学版), 2016, 46(2): 406-411.
[13] JIANG Rong-chao, WANG Deng-feng, QIN Min, JIANG Yong-feng. Lightweight design of twist beam of rear suspension of passenger car based on fatigue life [J]. 吉林大学学报(工学版), 2016, 46(1): 35-42.
[14] GAO Ming-liang, YU Sheng-bao, ZHENG Jian-bo, XU Chang, ZHANG Kun, LUAN Hui. Application of PSBP method in high-density two-dimensional resistivity inversion [J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033.
[15] SHAO Peng, WU Zhi-jian, ZHOU Xuan-yu. Particle swarm optimization algorithm based on opposite learning for linear phase low-pass FIR filter optimization [J]. 吉林大学学报(工学版), 2015, 45(3): 907-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!