吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 271-276.doi: 10.13229/j.cnki.jdxbgxb201601041

Previous Articles     Next Articles

Detection method of vehicle in highway green toll lane based on multi-feature fusion

ZHANG Hao1, 2, LIU Hai-ming1, 2, WU Chun-guo1, 2, ZHANG Yan-mei1, 2, ZHAO Tian-ming1, 2, LI Shou-tao3   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Symbol Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012, China;
    3.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2014-04-09 Online:2016-01-30 Published:2016-01-30

Abstract:

In order to ensure efficient computerized detection of vehicles passing green toll lane of highway, a detection method, named PGM-OCSVM, is proposed for free toll lane of highway based on multi-feature fusion. First, the Principal Component Analysis (PCA) is used to filter and simplify the sample characteristics. Then, the Genetic Algorithm is applied for adaptive adjustment of bandwidth of kernel function (σ) and false acceptance rate (v), which are two important parameters of one-class SVM. Finally, a one-class SVM model is constructed to learn the samples and classify the results. Big data analysis demonstrates that the proposed PGM-OCSVM can effectively complete green-vehicle discrimination task. This method has been applied to the vehicle detection system in free toll lane of highway.

Key words: computer applications, SVM, multi-feature fusion, one class classifier, vehicle detection of the free toll lane

CLC Number: 

  • TP391.4
[1] 孙晓宁.“绿色通道”车辆检测系统应用研究[J]. 中国交通信息化, 2012,30(5): 119.
Sun Xiao-ning. The research of “Green channel” vehicle detection system application[J]. Chinese traffic information, 2012, 30(5):119.
[2] 李寿涛,马用学,郭鹏程,等. 一种基于有限状态自动机的绿色通道车辆驾驶室避让控制方法[J]. 吉林大学学报: 工学版, 2014, 44 (4): 1069-1075.
Li Shou-tao, Ma Yong-xue , Guo Peng-cheng,et al. A control method for vehicle cab avoidance in free toll lane of highway based on finite state machine[J]. Journal of Jilin University(Engineering and Technology Edition) , 2014, 44 (4): 1069-1075.
[3] 林培杰, 郑柏春, 陈志聪, 等. 面向多区域视频监控的运动目标检测系统[J]. 液晶与显示, 2015,30(3): 484-491.
Lin Pei-jie, Zheng Bo-chun, Chen Zhi-cong, et al. System of multi-regions moving object detection in video surveillance[J]. Chinese Journal of Liquid Crystals and Displays, 2015,30(3): 484-491.
[4] 柯洪昌, 孙宏彬,. 图像序列的显著性目标区域检测方法[J]. 中国光学, 2015,8(5): 768-774.
Ke Hong-chang, Sun Hong-bin. A saliency target area detection method of image sequence[J]. Chinese Optics, 2015,8(5): 768-774.
[5] 刘志强, 尹建芹, 张玲, 等. 基于Kinect数据主成分分析的人体动作识别[J]. 光学精密工程, 2015, 23(10z): 702-711.
Liu Zhi-qiang, Yin Jian-qin, Zhang Ling, et al. Human action recognition based on Kinect data principal component analysis[J]. Optics and Precision Engineering, 2015, 23(10z): 702-711.
[6] 潘志松,陈斌,缪志敏,等. One-Class 分类器研究[J]. 电子学报, 2009, 37(11): 2496-2503.
Pan Zhi-song, Chen Bin, Miao Zhi-min, et al. Overview of study on one-class classifiers[J]. Acta Electronica Sinica, 2009, 37(11): 2496-2503.
[7] Schlkopf B, Platt J, Shawe-Taylor J, et al. Estimating thesupport of high-dimensional dist ribution[J]. Neural Computation, 2001, 13(7): 1443- 1471.
[8] 郭敬明, 何昕, 魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014,29(1): 120-128.
Guo Jing-ming, He Xin, Wei Zhong-hui. New mean shift tracking for color image based on online support vector machine[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(1): 120-128.
[9] Tsang I W, Kwok J T, Li S. Learning the kernel in mahalanob is one-class support vector machines[C]∥International Joint Conference on Neural Networks, Vancouver: IEEE Press,2006:1169-1175.
[10] 刘元宁, 王刚, 朱晓冬,等. 基于自适应多种群遗传算法的特征选择[J]. 吉林大学学报: 工学版, 2011, 41(6): 1690-1693.
Liu Yuan-ning, Wang Gang, Zhu Xiao-dong, et al. Feature selection based on adaptive multi-population genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(6): 1690-1693.
[11] 刘大有,梁艳春,王飞,等. 遗传程序设计方法综述[J]. 计算机研究与发展, 2001, 38(2): 213-222.
Liu Da-you, Liang Yan-chu, Wang Fei, et al. Genetic progamming paradigm: A survey[J]. Journal of Computer Research and Development,2001, 38(2): 213-222.
[12] 杨剑, 李伏欣, 王珏. 一种改进的局部切空间排列算法[J]. 软件学报, 2005, 16(9): 1584-1590.
Yang Jian, Li Fu-xin, Wang Jue. A better scaled local tangent space alignment algorithm[J]. Journal of Software, 2005, 16(9): 1584-1590.
[1] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
[2] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[3] YUAN Zhe-ming, ZHANG Hong-yang, CHEN Yuan. HIV-1 protease cleavage site prediction based on feature selection and support vector machine [J]. 吉林大学学报(工学版), 2017, 47(2): 639-646.
[4] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[5] ZHOU Bing-hai, XU Jia-hui. SVM-based real-time scheduling approach of multi-load carries [J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033.
[6] LU Ying, WANG Hui-qin, QIN Li-ke. Accurate fire location method in high and large-span space buildings [J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[7] MA Zhi-xing, ZHAO Qi, ZHANG Hao. Fourier analysis model for housekeeping gene [J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643.
[8] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[9] SHEN Xuan-jing, ZHAI Yu-jie, LU Yu-tong, WANG Yu, CHEN Hai-peng. Speaker recognition algorithm based on channel compensation [J]. 吉林大学学报(工学版), 2016, 46(3): 870-875.
[10] YANG Xin,LIU Jia,ZHOU Peng-yu,ZHOU Da-ke. Adaptive particle filter for object tracking based on fusing multiple features [J]. 吉林大学学报(工学版), 2015, 45(2): 533-539.
[11] XU Miao,ZHAO Ding-xuan,NI Tao,XU Chun-bo. Load prediction of hybrid excavator based on least square support vector machine [J]. 吉林大学学报(工学版), 2015, 45(1): 133-138.
[12] ZHANG Bao-hua, HUANG Wen-qian, LI Jiang-bo, ZHAO Chun-jiang, LIU Cheng-liang, HUANG Dan-feng. Online sorting of irregular potatoes based on I-RELIEF and SVM method [J]. 吉林大学学报(工学版), 2014, 44(6): 1811-1817.
[13] SUN Yi-xuan,SHAO Chun-fu,YUE Hao,ZHU Liang. Urban traffic accident severity analysis based on sensitivity analysis of support vector machine [J]. 吉林大学学报(工学版), 2014, 44(5): 1315-1320.
[14] LIU Qiang,SUN Ji-zhe,CHEN Xi-hong,LIU Ji-ye,ZHANG Qun. Application analysis of CPSO-LSSVM algorithm in AR clock error prediction [J]. 吉林大学学报(工学版), 2014, 44(3): 807-811.
[15] LI Yang, WEN Dun-wei, WANG Ke, LIU Le. Multiple kernel MtLSSVM and its application in lung nodule recognition [J]. 吉林大学学报(工学版), 2014, 44(2): 508-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!