吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1315-1320.doi: 10.7964/jdxbgxb201405015

Previous Articles     Next Articles

Urban traffic accident severity analysis based on sensitivity analysis of support vector machine

SUN Yi-xuan1,SHAO Chun-fu1,YUE Hao1,ZHU Liang2   

  1. 1.MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China;
    2.Transportation & Economic Research Institute, China Academy of Railway Sciences, Beijing 100081,China
  • Received:2013-11-22 Online:2014-09-01 Published:2014-09-01

Abstract: According to 4881 crash scene investigation data of accident database of a middle-size city, a Support Vector Machine (SVM) model is established for accident severity recognition, which is classified into low risk (property loss only) and high risk (injury or death involved). Grid Search (GS) and Genetic Algorithm (GA) are applied to find the best combination of penalty parameter C and Radial Basis Function (RBF) kernel parameter g. Then, the sensitivity analysis method is employed to evaluate the potential impacts of variables on the accident severity. The results show that the accuracies of the SVM model on both training and testing datasets are around 80%, which means better generalization performance: 8 variables of accident and vehicle attributes significantly influence the accident severity classification, which can be inferred as key factors.

Key words: traffic engineering, traffic accident severity, classification recognition, support vector machine(SVM), intelligent algorithm

CLC Number: 

  • U491
[1] Peter T, Savolainen P T, Fred L, et al. The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives[J]. Accident Analysis and Prevention, 2011, 43(5):1666-1676.
[2] Chang H, Yeh T. Risk factors to driver fatalities in single-vehicle crashes: comparisons between non-motorcycle drivers and motorcyclists[J]. Journal of Transportation Engineering, 2006, 132 (3): 227-236.
[3] Malyshkina N, Mannering F. Empirical assessment of the impact of highway design exceptions on the frequency and severity of vehicle accidents[J]. Accident Analysis and Prevention, 2010, 42(1): 131-139.
[4] Yamamoto T, Shankar V. Bivariate ordered-response probit model of driver's and passenger's injury severities in collisions with fixed objects[J]. Accident Analysis and Prevention, 2004, 36(5): 869-876.
[5] Helai H, Chor C, Haque M. Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis[J]. Accident Analysis and Prevention, 2008, 40(1): 45-54.
[6] Lee J, Mannering F. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis[J]. Accident Analysis and Prevention, 2002, 34(2): 149-161.
[7] Eluru N, Bhat C, Hensher D. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes[J]. Accident Analysis and Prevention, 2008, 40(3):1033-1054.
[8] 李世民,孙明玲,关宏志. 基于累积Logistic模型的交通事故严重程度预测模型[J].交通标准化,2009(3):168-171.Li Shi-min, Sun Ming-ling, Guan Hong-zhi. Prediction model cumulative logistic for severity of road traffic accident[J]. Transport Standardization, 2009(3):168-171.
[9] 马壮林,邵春福,李霞. 基于Logistic模型的公路隧道严重事故严重程度的影响因素[J].吉林大学学报:工学版,2010,40(2):423-426.Ma Zhuang-lin, Shao Chun-fu, Li Xia. Analysis of factors affecting accident severity in highway tunnels based on logistic model[J]. Journal of Jilin University(Engineering and Technology Edition),2010,40(2):423-426.
[10] Ma Zhuang-lin, Shao Chun-fu, Ma She-qiang, et al. Constructing road safety performance indicators using fuzzy delphi method and grey delphi method[J]. Expert Systems with Applications,2011,38(3):1509-1514.
[11] 侯树展,孙小瑞,贺玉龙,等.高速公路交通事故严重程度与交通流特征的关系研究[J].中国安全科学学报,2011(9):106-111.Hou Shu-zhan, Sun Xiao-rui, He Yu-long, et al. Relationships between crash severity and traffic flow characteristics on freeways[J]. China Safety Science Journal,2011(9):106-111.
[12] Mussone L, Ferrari A, Oneta M. An analysis of urban collisions using an artificial intelligence model[J]. Accident Analysis & Prevention, 1999, 31(6): 705-718.
[13] Chang L Y, Wang H W. Analysis of traffic injury severity: an application of non-parametric classification tree techniques[J]. Accident Analysis & Prevention, 2006, 38(5): 1019-1027.
[14] de Ona J, Mujalli R O, Calvo F J. Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks[J]. Accident Analysis and Prevention, 2011, 43 (1): 402-411.
[15] Delen D, Sharda R, Bessonov M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks[J]. Accident Analysis & Prevention, 2006, 38 (3): 434-444.
[16] Xie Yuan-chang , Lord Dominique , Zhang Yun-long. Predicting motor vehicle collisions using bayesian neural network models: an empirical analysis[J]. Accident Analysis & Prevention, 2011, 43(1): 402-411.
[17] de Oa Juan, Mujalli Randa Oqab, Calvo Francisco J. Analysis of traffic accident injury severity on spanish rural highways using bayesian networks[J]. Accident Analysis & Prevention, 2007, 39(5): 922-933.
[18] Li X G, Lord D, Zhang Y L, et al. Predicting motor-vehicle crashes using support vector machine models[J]. Accident Analysis & Prevention, 2008, 40(4): 1611-1618.
[19] 田英杰.支持向量回归机及其应用研究[D].北京:中国农业大学经济管理学院,2005.Tian Ying-jie. Support vector regression and its application[D]. Beijing:College of Economics & Management,China Agricultural University, 2005.
[20] 奉国和. SVM分类核函数及参数选择比较[J].计算机工程与应用,2011,47(3):123-128. Feng Guo-he. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications,2011,47(3): 123-128.
[21] 董国君,哈力木拉提·买买提,余辉. 基于RBF核的SVM核参数优化算法[J]. 新疆大学学报:自然科学版,2009(3):355-358.Dong Guo-jun, Halmurat Maimait, Yu Hui. Algorithms of optimizing SVM's kernel parameters with RBF kernel[J]. Journal of Xinjiang University(Natural Science Edition),2009(3):355-358.
[22] 徐崇刚,胡远满,常禹,等. 生态模型的灵敏度分析[J]. 应用生态学报,2004,15(6):1056-1062.Xu Chong-gang,Hu Yuan-man,Chang Yu,et al.Sensitivity analysis of ecological modeling[J].Chinese Journal of Applied Ecology,2004,15(6):1056-1062.
[23] Li Zhi-bin, Liu Pan, Wang Wei, et al. Using support vector machine models for crash injury severity analysis[J]. Accident Analysis & Prevention, 2012(45): 478-486.
[24] GA/T859-2010.中华人民共和国公安部. 道路交通事故处理信息数据结构[S].
[1] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[2] YUAN Zhe-ming, ZHANG Hong-yang, CHEN Yuan. HIV-1 protease cleavage site prediction based on feature selection and support vector machine [J]. 吉林大学学报(工学版), 2017, 47(2): 639-646.
[3] ZHOU Bing-hai, XU Jia-hui. SVM-based real-time scheduling approach of multi-load carries [J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033.
[4] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[5] MA Zhi-xing, ZHAO Qi, ZHANG Hao. Fourier analysis model for housekeeping gene [J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643.
[6] SHEN Xuan-jing, ZHAI Yu-jie, LU Yu-tong, WANG Yu, CHEN Hai-peng. Speaker recognition algorithm based on channel compensation [J]. 吉林大学学报(工学版), 2016, 46(3): 870-875.
[7] ZHANG Bao-hua, HUANG Wen-qian, LI Jiang-bo, ZHAO Chun-jiang, LIU Cheng-liang, HUANG Dan-feng. Online sorting of irregular potatoes based on I-RELIEF and SVM method [J]. 吉林大学学报(工学版), 2014, 44(6): 1811-1817.
[8] WANG Dan, ZHANG Xiang-he. Biomimetic recognition method of human behavior based on HOG and SVM [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 489-492.
[9] WANG Xue-jun, ZHAO Lin-lin, WANG Shuang. Video object extraction method based on active learning SVM [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 51-54.
[10] DONG Hong-hui,SUN Xiao-liang,JIA Li-min,QIN Yong. Multimode traffic volume prediction model [J]. 吉林大学学报(工学版), 2011, 41(03): 645-649.
[11] WANG Gang,LIU Yuan-ning,CHEN Hui-ling,DONG Hao,ZHU Xiao-dong,. Application of rough set and support vector machines in hepatitis diagnosis [J]. 吉林大学学报(工学版), 2011, 41(01): 160-0164.
[12] WANG Dian-hai,QI Hong-sheng. Road travel time under signal control [J]. 吉林大学学报(工学版), 2010, 40(03): 655-0660.
[13] LIU Yan,GAO Qing,HUANG Yong,Yü Ming,ZHANG Zhong-jin. Seasonal running performance in hydronic ice-snow melting on road by using the earth energy [J]. 吉林大学学报(工学版), 2010, 40(01): 72-0076.
[14] JIANG Gui-yan,WU Chao-teng. Link segmenting model of road network for the travel time collection based on GPS [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 177-0181.
[15] Jiang Guiyan, Zheng Zuduo, Bai Zhu, Dai Leilei, Zhao Jiaqi. Simulationbased assessment of variable message signs route guidance information under congestion condition [J]. 吉林大学学报(工学版), 2006, 36(02): 183-0187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!